Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Inorg Chem ; 63(12): 5652-5663, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38470330

RESUMEN

Most 3d metal-based single-molecule magnets (SMMs) use N-ligands or ligands with even softer donors to impart a particular coordination geometry and increase the zero-field splitting parameter |D|, while complexes with hard O-donor ligands showing slow magnetization relaxation are rare. Here, we report that a diamagnetic NiII complex of a tetradentate ligand featuring two N-heterocyclic carbene and two alkoxide-O donors, [LO,ONi], can serve as a {O,O'}-chelating metalloligand to give a trinuclear complex [(LO,ONi)Co(LO,ONi)](OTf)2 (2) with an elongated tetrahedral {CoIIO4} core, D = -74.3 cm-1, and a spin reversal barrier Ueff = 86.9 cm-1 in the absence of an external dc field. The influence of diamagnetic NiII on the electronic structure of the {CoO4} unit in comparison to [Co(OPh)4]2- (A) has been probed with multireference ab initio calculations. These reveal a contrapolarizing effect of the NiII, which forms stronger metal-alkoxide bonds than the central CoII, inducing a change in ligand field splitting and a 5-fold increase in the magnetic anisotropy in 2 compared to A, with an easy magnetization axis along the Ni-Co-Ni vector. This demonstrates a strategy to enhance the SMM properties of 3d metal complexes with hard O-donors by modulating the ligand field character via the coordination of diamagnetic ions and the benefit of robust metalloligands in that regard.

2.
J Am Chem Soc ; 145(33): 18477-18486, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37565682

RESUMEN

The active site of nitrous oxide reductase (N2OR), a key enzyme in denitrification, features a unique µ4-sulfido-bridged tetranuclear Cu cluster (the so-called CuZ or CuZ* site). Details of the catalytic mechanism have remained under debate and, to date, synthetic model complexes of the CuZ*/CuZ sites are extremely rare due to the difficulty in building the unique {Cu4(µ4-S)} core structure. Herein, we report the synthesis and characterization of [Cu4(µ4-S)]n+ (n = 2, 2; n = 3, 3) clusters, supported by a macrocyclic {py2NHC4} ligand (py = pyridine, NHC = N-heterocyclic carbene), in both their 0-hole (2) and 1-hole (3) states, thus mimicking the two active states of the CuZ* site during enzymatic N2O reduction. Structural and electronic properties of these {Cu4(µ4-S)} clusters are elucidated by employing multiple methods, including X-ray diffraction (XRD), nuclear magnetic resonance (NMR), UV/vis, electron paramagnetic resonance (EPR), Cu/S K-edge X-ray emission spectroscopy (XES), and Cu K-edge X-ray absorption spectroscopy (XAS) in combination with time-dependent density functional theory (TD-DFT) calculations. A significant geometry change of the {Cu4(µ4-S)} core occurs upon oxidation from 2 (τ4(S) = 0.46, seesaw) to 3 (τ4(S) = 0.03, square planar), which has not been observed so far for the biological CuZ(*) site and is unprecedented for known model complexes. The single electron of the 1-hole species 3 is predominantly delocalized over two opposite Cu ions via the central S atom, mediated by a π/π superexchange pathway. Cu K-edge XAS and Cu/S K-edge XES corroborate a mixed Cu/S-based oxidation event in which the lowest unoccupied molecular orbital (LUMO) has a significant S-character. Furthermore, preliminary reactivity studies evidence a nucleophilic character of the central µ4-S in the fully reduced 0-hole state.

3.
Chemistry ; 29(24): e202203494, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-36645730

RESUMEN

Using a novel tricompartmental hydrazone ligand, a set of trinuclear Dy3 complexes has been isolated and structurally characterized. Complexes Dy3 ⋅ Cl, Dy3 ⋅ Br, and Dy3 ⋅ ClO4 feature a similar overall topology but different anions (Cl- , Br- , or ClO4 - ) in combination with exogenous OH- and solvent co-ligands, which is found to translate into very different magnetic properties. Complex Dy3 ⋅ Cl shows a double relaxation process with fast quantum tunneling of the magnetization, probably related to the structural disorder of µ2 -OH- and µ2 -Cl- co-ligands. Relaxation of the magnetization is slowed down for Dy3 ⋅ Br and Dy3 ⋅ ClO4 , which do not show any structural disorder. In particular, fast quantum tunneling is suppressed in case of Dy3 ⋅ ClO4 , resulting in an energy barrier of 341 K and magnetic hysteresis up to 3.5 K; this makes Dy3 ⋅ ClO4 one of the most robust air-stable trinuclear SMMs. Magneto-structural relationships of the three complexes are analyzed and rationalized with the help of CASSCF/RASSI-SO calculations.

4.
Inorg Chem ; 62(45): 18338-18356, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37913548

RESUMEN

Four new pentadentate N5-donor ligands, [N-(1-methyl-2-imidazolyl)methyl-N-(2-pyridyl)-methyl-N-(bis-2-pyridylmethyl)-amine] (L1), [N-bis(1-methyl-2-imidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L2), (N-(isoquinolin-3-ylmethyl)-1,1-di(pyridin-2-yl)-N-(pyridin-2-ylmethyl)methanamine (L3), and N,N-bis(isoquinolin-3-ylmethyl)-1,1-di(pyridin-2-yl)methanamine (L4), have been synthesized based on the N4Py ligand framework, where one or two pyridyl arms of the N4Py parent are replaced by (N-methyl)imidazolyl or N-(isoquinolin-3-ylmethyl) moieties. Using these four pentadentate ligands, the mononuclear complexes [FeII(CH3CN)(L1)]2+ (1a), [FeII(CH3CN)(L2)]2+ (2a), [FeII(CH3CN)(L3)]2+ (3a), and [FeII(CH3CN)(L4)]2+ (4a) have been synthesized and characterized. The half-wave potentials (E1/2) of the complexes become more positive in the order: 2a < 1a < 4a ≤ 3a ≤ [Fe(N4Py)(CH3CN)]2+. The order of redox potentials correlates well with the Fe-Namine distances observed by crystallography, which are 2a > 1a ≥ 4a > 3a ≥ [Fe(N4Py)(CH3CN)]2+. The corresponding ferryl complexes [FeIV(O)(L1)]2+ (1b), [FeIV(O)(L2)]2+ (2b), [FeIV(O)(L3)]2+ (3b), and [FeIV(O)(L4)]2+ (4b) were prepared by the reaction of the ferrous complexes with isopropyl 2-iodoxybenzoate (IBX ester) in acetonitrile. The greenish complexes 3b and 4b were also isolated in the solid state by the reaction of the ferrous complexes in CH3CN with ceric ammonium nitrate in water. Mössbauer spectroscopy and magnetic measurements (using superconducting quantum interference device) show that the four complexes 1b, 2b, 3b, and 4b are low-spin (S = 1) FeIV═O complexes. UV/vis spectra of the four FeIV═O complexes in acetonitrile show typical long-wavelength absorptions of around 700 nm, which are expected for FeIV═O complexes with N4Py-type ligands. The wavelengths of these absorptions decrease in the following order: 721 nm (2b) > 706 nm (1b) > 696 nm (4b) > 695 nm (3b) = 695 nm ([FeIV(O) (N4Py)]2+), indicating that the replacement of the pyridyl arms with (N-methyl) imidazolyl moieties makes L1 and L2 exert weaker ligand fields than the parent N4Py ligand, while the ligand field strengths of L3 and L4 are similar to the N4Py parent despite the replacement of the pyridyl arms with N-(isoquinolin-3-ylmethyl) moieties. Consequently, complexes 1b and 2b tend to be less stable than the parent [FeIV(O)(N4Py)]2+ complex: the half-life sequence at room temperature is 1.67 h (2b) < 16 h (1b) < 45 h (4b) < 63 h (3b) ≈ 60 h ([FeIV(O)(N4Py)]2+). Compared to the parent complex, 1b and 2b exhibit enhanced reactivity in both the oxidation of thioanisole in the oxygen atom transfer (OAT) reaction and the oxygenation of C-H bonds of aromatic and aliphatic substrates, presumed to occur via an oxygen rebound process. Furthermore, the second-order rate constants for hydrogen atom transfer (HAT) reactions affected by the ferryl complexes can be directly related to the C-H bond dissociation energies of a range of substrates that have been studied. Using either IBX ester or H2O2 as an oxidant, all four new FeII complexes display good performance in catalytic reactions involving both HAT and OAT reactions.

5.
Angew Chem Int Ed Engl ; 62(10): e202215840, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36504436

RESUMEN

A flexible macrocyclic ligand with two tridentate {CNC} compartments can host two Cu ions in reversibly interconvertible states, CuI CuI (1) and mixed-valent Cu1.5 Cu1.5 (2). They were characterized by XRD and multiple spectroscopic methods, including EPR, UV/Vis absorption and MCD, in combination with TD-DFT and CASSCF calculations. 2 features a short Cu⋅⋅⋅Cu distance (≈2.5 Å; compared to ≈4.0 Šin 1) and a very high delocalization energy of 13 000 cm-1 , comparable to the mixed-valent state of the biological CuA site. Electron self-exchange between 1 and 2 is rapid despite large structural reorganization, and is proposed to proceed via a sequential mechanism involving an active conformer of 1, viz. 1'; the latter has been characterized by XRD. Such electron transfer (ET) process is reminiscent of the conformationally gated ET proposed for biological systems. This redox couple is a unique pair of flexible dicopper complexes, achieving fast electron self-exchange closely related to the function of the CuA site.

6.
J Am Chem Soc ; 144(6): 2520-2534, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35050605

RESUMEN

A series of organometallic copper complexes in formal oxidation states ranging from +1 to +3 have been characterized by a combination of Cu K-edge X-ray absorption (XAS) and Cu Kß valence-to-core X-ray emission spectroscopies (VtC XES). Each formal oxidation state exhibits distinctly different XAS and VtC XES transition energies due to the differences in the Cu Zeff, concomitant with changes in physical oxidation state from +1 to +2 to +3. Herein, we demonstrate the sensitivity of XAS and VtC XES to the physical oxidation states of a series of N-heterocyclic carbene (NHC) ligated organocopper complexes. We then extend these methods to the study of the [Cu(CF3)4]- ion. Complemented by computational methods, the observed spectral transitions are correlated with the electronic structure of the complexes and the Cu Zeff. These calculations demonstrate that a contraction of the Cu 1s orbitals to deeper binding energy upon oxidation of the Cu center manifests spectroscopically as a stepped increase in the energy of both XAS and Kß2,5 emission features with increasing formal oxidation state within the [Cun+(NHC2)]n+ series. The newly synthesized Cu(III) cation [CuIII(NHC4)]3+ exhibits spectroscopic features and an electronic structure remarkably similar to [Cu(CF3)4]-, supporting a physical oxidation state assignment of low-spin d8 Cu(III) for [Cu(CF3)4]-. Combining XAS and VtC XES further demonstrates the necessity of combining multiple spectroscopies when investigating the electronic structures of highly covalent copper complexes, providing a template for future investigations into both synthetic and biological metal centers.

7.
Chemistry ; 28(29): e202200648, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35319128

RESUMEN

The targeted cleavage of the C-N bonds of alkyl primary amines in sustainable compounds of biomass according to a metal-free pathway and the conjunction of nitrogen in the synthesis of imidazo[1,5-a]pyridines are still highly challenging. Despite tremendous progress in the synthesis of imidazo[1,5-a]pyridines over the past decade, many of them can still not be efficiently prepared. Herein, we report an anomeric stereoauxiliary approach for the synthesis of a wide range of imidazo[1,5-a]pyridines after cleaving the C-N bond of d-glucosamine (α-2° amine) from biobased resources. This new approach expands the scope of readily accessible imidazo[1,5-a]pyridines relative to existing state-of-the-art methods. A key strategic advantage of this approach is that the α-anomer of d-glucosamine enables C-N bond cleavage via a seven-membered ring transition state. By using this novel method, a series of imidazo[1,5-a]pyridine derivatives (>80 examples) was synthesized from pyridine ketones (including para-dipyridine ketone) and aldehydes (including para-dialdehyde). Imidazo[1,5-a]pyridine derivatives containing diverse important deuterated C(sp2 )-H and C(sp3 )-H bonds were also efficiently achieved.


Asunto(s)
Glucosamina , Imidazoles , Aldehídos/química , Aminas , Imidazoles/química , Cetonas/química , Piridinas/química
8.
Inorg Chem ; 61(18): 7153-7164, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35475617

RESUMEN

Iron complexes with nitrido ligands are of interest as molecular analogues of key intermediates during N2-to-NH3 conversion in industrial or enzymatic processes. Dinuclear iron complexes with a bridging nitrido unit are mostly known in relatively high oxidation states (III/IV or IV/IV), originating from the decomposition of azidoiron precursors via high-valent Fe≡N intermediates. The use of a tetra-NHC macrocyclic scaffold ligand (NHC = N-heterocyclic carbene) has now allowed for the isolation of a series of organometallic µ-nitridodiiron complexes ranging from the mid-valent FeIII-N-FeIII (1) via mixed-valent FeIII-N-FeIV (type 4) to the high-valent FeIV-N-FeIV (type 5) species that are interconverted at moderate potentials, accompanied by axial ligand binding at the FeIV sites. Magnetic measurements and electron paramagnetic resonance spectroscopy showed the homovalent complexes to be diamagnetic and the mixed-valent system to feature an S = 1/2 ground state due to very strong antiferromagnetic coupling. The bonding in the Fe-N-Fe moiety has been further probed by crystallographic structure determination, 57Fe Mössbauer and UV-vis spectroscopies, as well as density functional theory computations, which revealed high covalency and nearly identical Fe-N distances across this redox series. The latter has been rationalized in terms of the nonbonding nature of the combination of Fe dz2 atomic orbitals from which electrons are successively removed upon oxidation, and these redox processes are best described as being metal-centered. The tetra-NHC-ligated µ-nitridodiiron series complements a set of related complexes with single-atom µ-oxido and µ-phosphido bridges, but the Fe-N-Fe core exhibits a comparatively high stability over several oxidation states. This promises interesting applications in view of the manifold catalytic uses of µ-nitridodiiron complexes based on macrocyclic N-donor porphinato(2-) or phthalocyaninato(2-) ligands.


Asunto(s)
Compuestos Férricos , Hierro , Electrones , Compuestos Férricos/química , Hierro/química , Ligandos , Oxidación-Reducción
9.
Inorg Chem ; 61(35): 13944-13955, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36001121

RESUMEN

Molecular systems combining light harvesting and charge storage are receiving great attention in the context of, for example, artificial photosynthesis and solar fuel generation. As part of ongoing efforts to develop new concepts for photoinduced proton-coupled electron transfer (PCET) reactivities, we report a cyclometallated iridium(III) complex [Ir(ppy)2(S-Sbpy)](PF6) ([1]PF6) equipped with our previously developed sulfurated bipyridine ligand S-Sbpy. A new one-step synthetic protocol for S-Sbpy is developed, starting from commercially available 2,2'-bipyridine, which significantly facilitates the use of this ligand. [1]+ features a two-electron reduction with potential inversion (|E1| > |E2|) at moderate potentials (E1 = -1.12, E2 = -1.11 V versus. Fc+/0 at 253 K), leading to a dithiolate species [1]-. Protonation with weak acids allows for determination of pKa = 23.5 in MeCN for the S-H···S- unit of [1H]. The driving forces for both the H atom and the hydride transfer are calculated to be ∼60 kcal mol-1 and verified experimentally by reaction with a suitable H atom and a hydride acceptor, demonstrating the ability of [1]+ to serve as a versatile PCET reagent, albeit with limited thermal stability. In MeCN solution, an orange emission for [1]PF6 from a triplet-excited state was found. Density functional calculations and ultrafast absorption spectroscopy are used to give insight into the excited-state dynamics of the complex and suggest a significantly stretched S-S bond for the lowest triplet-state T1. The structural responsiveness of the disulfide unit is proposed to open an effective relaxation channel toward the ground state, explaining the unexpectedly short lifetime of [1]+. These insights as well as the quantitative ground-state thermochemistry data provide valuable information for the use of S-Sbpy-functionalized complexes and their disulfide-/dithiol-directed PCET reactivity.


Asunto(s)
Compuestos Heterocíclicos , Iridio , Disulfuros , Iridio/química , Ligandos , Luminiscencia , Protones
10.
J Am Chem Soc ; 143(16): 6238-6247, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33861085

RESUMEN

The transfer of multiple electrons and protons is of crucial importance in many reactions relevant in biology and chemistry. Natural redox-active cofactors are capable of storing and releasing electrons and protons under relatively mild conditions and thus serve as blueprints for synthetic proton-coupled electron transfer (PCET) reagents. Inspired by the prominence of the 2e-/2H+ disulfide/dithiol couple in biology, we investigate herein the diverse PCET reactivity of a Re complex equipped with a bipyridine ligand featuring a unique SH···-S moiety in the backbone. The disulfide bond in fac-[Re(S-Sbpy)(CO)3Cl] (1, S-Sbpy = [1,2]dithiino[4,3-b:5,6-b']dipyridine) undergoes two successive reductions at equal potentials of -1.16 V vs Fc+|0 at room temperature forming [Re(S2bpy)(CO)3Cl]2- (12-, S2bpy = [2,2'-bipyridine]-3,3'-bis(thiolate)). 12- has two adjacent thiolate functions at the bpy periphery, which can be protonated forming the S-H···-S unit, 1H-. The disulfide/dithiol switch exhibits a rich PCET reactivity and can release a proton (ΔG°H+ = 34 kcal mol-1, pKa = 24.7), an H atom (ΔG°H• = 59 kcal mol-1), or a hydride ion (ΔG°H- = 60 kcal mol-1) as demonstrated in the reactivity with various organic test substrates.


Asunto(s)
Complejos de Coordinación/química , Disulfuros/química , Renio/química , Tolueno/análogos & derivados , Complejos de Coordinación/síntesis química , Transporte de Electrón , Hidrógeno/química , Cinética , Conformación Molecular , Oxidación-Reducción , Protones , Termodinámica , Tolueno/química
11.
J Am Chem Soc ; 143(27): 10361-10366, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34191490

RESUMEN

Superoxo complexes of copper are primary adducts in several O2-activating Cu-containing metalloenzymes as well as in other Cu-mediated oxidation and oxygenation reactions. Because of their intrinsically high reactivity, however, isolation of Cux(O2•-) species is challenging. Recent work (J. Am. Chem. Soc. 2017, 139, 9831; 2019, 141, 12682) established fundamental thermochemical data for the H atom abstraction reactivity of dicopper(II) superoxo complexes, but structural characterization of these important intermediates was so far lacking. Here we report the first crystallographic structure determination of a superoxo dicopper(II) species (3) together with the structure of its 1e- reduced peroxo congener (2; a rare cis-µ-1,2-peroxo dicopper(II) complex). Interconversion of 2 and 3 occurs at low potential (-0.58 V vs Fc/Fc+) and is reversible both chemically and electrochemically. Comparison of metric parameters (d(O-O) = 1.441(2) Å for 2 vs 1.329(7) Å for 3) and of spectroscopic signatures (ν̃(16O-16O) = 793 cm-1 for 2 vs 1073 cm-1 for 3) reflects that the redox process occurs at the bridging O2-derived unit. The CuII-O2•--CuII complex has an S = 1/2 spin ground state according to magnetic and EPR data, in agreement with density functional theory calculations. Computations further show that the potential associated with changes of the Cu-O-O-Cu dihedral angle is shallow for both 2 and 3. These findings provide a structural basis for the low reorganization energy of the kinetically facile 1e- interconversion of µ-1,2-superoxo/peroxo dicopper(II) couples, and they open the door for comprehensive studies of these key intermediates in Cux/O2 chemistry.

12.
J Am Chem Soc ; 143(42): 17751-17760, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34658244

RESUMEN

The properties of metal/dioxygen species, which are key intermediates in oxidation catalysis, can be modulated by interaction with redox-inactive Lewis acids, but structural information about these adducts is scarce. Here we demonstrate that even mildly Lewis acidic alkali metal ions, which are typically viewed as innocent "spectators", bind strongly to a reactive cis-peroxo dicopper(II) intermediate. Unprecedented structural insight has now been obtained from X-ray crystallographic characterization of the "bare" CuII2(µ-η1:η1-O2) motif and its Li+, Na+, and K+ complexes. UV-vis, Raman, and electrochemical studies show that the binding persists in MeCN solution, growing stronger in proportion to the cation's Lewis acidity. The affinity for Li+ is surprisingly high (∼70 × 104 M-1), leading to Li+ extraction from its crown ether complex. Computational analysis indicates that the alkali ions influence the entire Cu-OO-Cu core, modulating the degree of charge transfer from copper to dioxygen. This induces significant changes in the electronic, magnetic, and electrochemical signatures of the Cu2O2 species. These findings have far-reaching implications for analyses of transient metal/dioxygen intermediates, which are often studied in situ, and they may be relevant to many (bio)chemical oxidation processes when considering the widespread presence of alkali cations in synthetic and natural environments.

13.
Inorg Chem ; 60(1): 449-459, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33332100

RESUMEN

The dynamics of the photodriven charge transfer-induced spin transition (CTIST) in two Fe/Co Prussian Blue Analogues (PBAs) are revealed by femtosecond IR and UV/vis pump-probe spectroscopy. Depending on temperature, the known tetranuclear square-type complex [Co2Fe2(CN)6(tp*)2(4,4'-dtbbpy)4](PF6)2 (1) exists in two electronic states. In acetonitrile solution, at <240 K, the low temperature (LT) phase is prevalent consisting of low-spin Fe(II) and low-spin Co(III), [FeIILSCoIIILS]2. Temperature rise is the reason behind thermally-induced CTIST toward the high temperature (HT) phase consisting of low-spin Fe(III) and high-spin Co(II), [FeIIILSCoIIHS]2, being prevalent at >300 K. Photoexcitation into the intervalence charge transfer (IVCT) band of the LT phase at 800 nm induces electron transfer in one Fe-Co edge of PBA 1 and produces a [FeIIILSCoIILS] intermediate which by spin-crossover (SCO) is stabilized within 400 fs to a long-lived (>1 ns) [FeIIILSCoIIHS] species. In contrast, IVCT excitation of the HT phase at 400 nm generates a [FeIILSCoIIIHS] species with a lifetime of 3.6 ps. Subsequent back-electron transfer populates the vibrationally hot ground state, which thermalizes within 8 ps. The newly synthesized dinuclear PBA, [CoFe(CN)3(tp*)(pz*4Lut)]ClO4 (2), provides a benchmark of the HT phase of 1, i.e., [FeIIILSCoIIHS], as verified by variable temperature magnetic susceptibility measurements and 57Fe Mössbauer spectroscopy. The photoinduced charge transfer dynamics of PBA 2 indeed are almost identical to that of the HT phase of PBA 1 with a lifetime of the excited [FeIILSCoIIIHS] species of 3.8 ps.

14.
Angew Chem Int Ed Engl ; 60(26): 14480-14487, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-33829680

RESUMEN

Using a pyrazolate-bridged dinucleating ligand that provides two proximate pincer-type PNN binding sites ("two-in-one pincer"), different synthetic routes have been developed towards its dicobalt(I) complex 2 that features a twice deprotonated ligand backbone and two weakly activated terminal N2 substrate ligands directed into the bimetallic pocket. Protonation of 2 is shown to occur at the ligand scaffold and to trigger conversion to a tetracobalt(I) complex 4 with two end-on µ1,2 -bridging N2 ; in THF 4 is labile and undergoes temperature-dependent N2 /triflate ligand exchange. These pyrazolate-based systems combine the potential of exhibiting both metal-metal and metal-ligand cooperativity, viz. two concepts that have emerged as promising design motifs for molecular N2 fixation catalysts. Complex 2 serves as an efficient (pre)catalyst for the reductive silylation of N2 into N(SiMe3 )3 (using KC8 and Me3 SiCl), yielding up to 240 equiv N(SiMe3 )3 per catalyst.

15.
Angew Chem Int Ed Engl ; 60(4): 1891-1896, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33026170

RESUMEN

The dinickel(II) dihydride complex (1K ) of a pyrazolate-based compartmental ligand with ß-diketiminato (nacnac) chelate arms (L- ), providing two pincer-type {N3 } binding pockets, has been reported to readily eliminate H2 and to serve as a masked dinickel(I) species. Discrete dinickel(I) complexes (2Na , 2K ) of L- are now synthesized via a direct reduction route. They feature two adjacent T-shaped metalloradicals that are antiferromagnetically coupled, giving an S=0 ground state. The two singly occupied local d x 2 - y 2 type magnetic orbitals are oriented into the bimetallic cleft, enabling metal-metal cooperative 2 e- substrate reductions as shown by the rapid reaction with H2 or O2 . X-ray crystallography reveals distinctly different positions of the K+ in 1K and 2K , suggesting a stabilizing interaction of K+ with the dihydride unit in 1K . H2 release from 1K is triggered by peripheral γ-C protonation at the nacnac subunits, which DFT calculations show lowers the barrier for reductive H2 elimination from the bimetallic cleft.

16.
J Am Chem Soc ; 142(14): 6717-6728, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32163715

RESUMEN

Nickel(I) metalloradicals bear great potential for the reductive activation of challenging substrates but are often too unstable to be isolated. Similar chemistry may be enabled by nickel(II) hydrides that store the reducing equivalents in hydride bonds and reductively eliminate H2 upon substrate binding. Here we present a pyrazolate-based bis(ß-diketiminato) ligand [LPh]3- with bulky m-terphenyl substituents that can host two Ni-H units in close proximity. Complexes [LPh(NiII-H)2]- (3) are prone to intramolecular reductive H2 elimination, and an equilibrium between 3 and orthometalated dinickel(II) monohydride complexes 2 is evidenced. 2 is shown to form via intramolecular metal-metal cooperative phenyl group C(sp2)-H oxidative addition to the dinickel(I) intermediate [LPhNiI2]- (4). While NiI species have been implicated in catalytic C-H functionalization, discrete activation of C-H bonds at NiI complexes has rarely been described. The reversible H2 and C-H reductive elimination/oxidative addition equilibrium smoothly unmasks the powerful 2-electron reductant 4 from either 2 or 3, which is demonstrated by reaction with benzaldehyde. A dramatic cation effect is observed for the rate of interconversion of 2 and 3 and also for subsequent thermally driven formation of a twice orthometalated dinickel(II) complex 6. X-ray crystallographic and NMR titration studies indicate distinct interaction of the Lewis acidic cation with 2 and 3. The present system allows for the unmasking of a highly reactive [LPhNiI2]- intermediate 4 either via elimination of H2 from dihydride 3 or via reductive C-H elimination from monohydride 2. The latter does not release any H2 byproduct and adds a distinct platform for metal-metal cooperative two-electron substrate reductions while circumventing the isolation of any unstable superreduced form of the bimetallic scaffold.

17.
Inorg Chem ; 59(19): 14207-14217, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32960575

RESUMEN

The transition-metal-mediated reductive activation of nitro compounds and subsequent proton-coupled N-O bond cleavage reactions are key steps of important processes such as the commercially relevant conversions of nitroaryls to aniline derivatives. Here we report the reactivity of selected nitro substrates RNO2 (R = Me, Ph, p-C6H4CHO) with pyrazolate-based dinickel(II) dihydride complexes [ML(NiH)2] (M = Na, K); the latter eliminate H2 upon substrate binding and serve as a masked dinickel(I) platform. The products [MLNi2(O2NR)] (R = Me, 3Me-M; R = Ph, 3Ph-M) host a µ-κO,κO' bridging twice deprotonated dihydroxy amine [RNO2]2- within the dinickel pocket, and structural analysis as well as NMR evidence show that the alkali cation (Na+ or K+) is closely associated with the reduced substrate. In the case of p-nitrobenzaldehyde, chemoselective reduction of the nitro group is observed to give 3Bna-K. The 3Me-M complexes in solution are unstable and show first order decay to a mixture of complexes [LNi2(µ-OH)] (4) and [LNi2(ON═CH2)] (5), with the latter containing a µ-κO,κN formaldoximato ligand. The decay rate of 3Me-M strongly depends on the alkali cation (k = 2.38 (±0.03) × 104 s-1 for 3Me-K and 4.69 (±0.06) × 10-6 s-1 for 3Me-Na), and a mechanistic scenario is proposed. Protonation of 3Ph-K induces disproportionation of the bound [PhNO2]2- to give free PhNO2, 4, and [LNi2(ON(H)Ph)] (2Ph-H) featuring an O-deprotonated µ-κO,κN hydroxylamine in the dinickel(II) cleft; abstraction of the cation K+ from 3Ph-K via addition of cryptand gives the analogous complex [LNi2(ONPh)][K(crypt)] (2Ph-K[crypt]) with a twice deprotonated hydroxylamine ligand. The results are discussed in light of the intermediates that are proposed to be relevant in the sequence of nitro group reduction and protonation steps, as implicated in the conversion of nitroaryls to anilines.

18.
Inorg Chem ; 59(10): 7290-7305, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32374995

RESUMEN

A series of PtII-based monometallic (H2PtL), homobimetallic (Pt2L), and heterobimetallic (NiPtL and PdPtL) group 10 complexes of the previously established expanded twin porphyrin (H4L) were prepared. Structural characterization of the bimetallic PtII series (Pt2L, NiPtL, and PdPtL) revealed their similar general structures, with slight differences correlated to the ion size. An improvement of the metal-ion insertion process also allowed efficient preparation of the known Pd2L complex, and the novel heterobimetallic NiPdL complex was also structurally characterized. UV-vis spectroscopy, NMR spectroscopy, magnetic circular dichroism (MCD), and (spectro)electrochemistry were used to characterize the complexes; the electronic properties followed largely established lines for metal complexes of the twin porphyrin, except that the PtII-based systems exhibited more complex UV-vis spectral signatures. MCD spectra accompanied by density functional theory (DFT)/time-dependent DFT computations (TDDFT) rationalize the origins of the optical features of the twin porphyrin. The presence of the nonplanar, nonaromatic macrocyclic π system with conjugation pathways confined to each half of the molecule could be visualized. Significant pyrazole(π) → pyrrole(π*) charge-transfer character was predicted for several transitions in the visible region. This study adds to our fundamental understanding of the formation, structure, and electronic structure of bimetallic complexes of this class of expanded metalloporphyrins containing nonpyrrolic moieties.

19.
Inorg Chem ; 59(7): 4972-4984, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32142275

RESUMEN

The development of new solar-to-fuel scenarios is of great importance, but the construction of molecular systems that convert sunlight into chemical energy represents a challenge. One specific issue is that the molecular systems have to be able to accumulate redox equivalents to mediate the photodriven transformation of relevant small molecules, which mostly involves the orchestrated transfer of multiple electrons and protons. Disulfide/dithiol interconversions are prominent 2e-/2H+ couples and can play an important role for redox control and charge storage. With this background in mind, a new photosensitizer [Ru(S-Sbpy)(bpy)2]2+ (12+) equipped with a disulfide functionalized bpy ligand (S-Sbpy, bpy = 2,2'-bipyridine) was synthesized and has been comprehensively studied, including structural characterization by X-ray diffraction. In-depth electrochemical studies show that the S-Sbpy ligand in 12+ can be reduced twice at moderate potentials (around -1.1 V vs Fc+/0), and simulation of the cyclic voltammetry (CV) traces revealed potential inversion (E2 > E1) and allowed to derive kinetic parameters for the sequential electron-transfer processes. However, reduction at room temperature also triggers the ejection of one sulfur atom from 12+, leading to the formation of [Ru(Sbpy)(bpy)2]2+(22+). This chemical reaction can be suppressed by decreasing the temperature from 298 to 248 K. Compared to the archetypical photosensitizer [Ru(bpy)3]2+, 12+ features an additional low energy optical excitation in the MLCT region, originating from charge transfer from the metal center to the S-Sbpy ligand (aka MSCT) according to time-dependent density functional theory (TD-DFT) calculations. Analysis of the excited states of 12+ on the basis of ground-state Wigner sampling and using charge-transfer descriptors has shown that bpy modification with a peripheral disulfide moiety leads to an energy splitting between charge-transfer excitations to the S-Sbpy and the bpy ligands, offering the possibility of selective charge transfer from the metal to either type of ligands. Compound 12+ is photostable and shows an emission from a 3MLCT state in deoxygenated acetonitrile with a lifetime of 109 ns. This work demonstrates a rationally designed system that enables future studies of photoinduced multielectron, multiproton PCET chemistry.

20.
Angew Chem Int Ed Engl ; 59(1): 373-379, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31539187

RESUMEN

Spectroscopic and biophysical methods for structural determination at atomic resolution are fundamental in studies of biological function. Here we introduce an approach to measure molecular distances in bio-macromolecules using 19 F nuclear spins and nitroxide radicals in combination with high-frequency (94 GHz/3.4 T) electron-nuclear double resonance (ENDOR). The small size and large gyromagnetic ratio of the 19 F label enables to access distances up to about 1.5 nm with an accuracy of 0.1-1 Å. The experiment is not limited by the size of the bio-macromolecule. Performance is illustrated on synthesized fluorinated model compounds as well as spin-labelled RNA duplexes. The results demonstrate that our simple but strategic spin-labelling procedure combined with state-of-the-art spectroscopy accesses a distance range crucial to elucidate active sites of nucleic acids or proteins in the solution state.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Marcadores de Spin/síntesis química , Humanos , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda