Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38376502

RESUMEN

Opinion 129 addresses the status of Firmicutes corrig. Gibbons and Murray 1978 (Approved Lists 1980). The name has the category 'division' and was included in the Approved Lists of Bacterial Names, although that category had previously been removed from the International Code of Nomenclature of Bacteria (1975 revision onwards). When the category 'phylum' was introduced into the International Code of Nomenclature of Prokaryotes (ICNP) in 2021, equivalence between 'phylum' and 'division' was not stipulated. Since the definition of the taxonomic categories and their relative order is one of the principal tasks of every code of nomenclature, the inclusion of Firmicutes corrig. Gibbons and Murray 1978 in the Approved Lists was an error. The name is either not validly published or illegitimate because its category is not covered by the ICNP. If Firmicutes corrig. Gibbons and Murray 1978 (Approved Lists 1980) was a validly published phylum name, it would be illegitimate because it would contravene Rule 8, which does not permit any deviation from the requirement to derive a phylum name from the name of the type genus. Since Firmicutes corrig. Gibbons and Murray 1978 is also part of a 'misfitting megaclassification' recognized in Opinion 128, the name is rejected, without any pre-emption regarding a hypothetically validly published name Firmicutes at the rank of phylum. Gracilicutes Gibbons and Murray 1978 (Approved Lists 1980) and Anoxyphotobacteriae Gibbons and Murray 1978 (Approved Lists 1980) are also rejected. The validly published phylum names have a variety of advantages over their not validly published counterparts and cannot be replaced with ad hoc names suggested in the literature. To ease the transition, it is recommended to mention the not validly published phylum names which strongly deviate in spelling from their validly published counterparts along with the latter in publications during the next years.


Asunto(s)
Ácidos Grasos , Hylobates , Animales , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química , Firmicutes
2.
Artículo en Inglés | MEDLINE | ID: mdl-36912622

RESUMEN

In this paper the Judicial Commission provides general guidance for interpreting the International Code of Nomenclature of Prokaryotes (ICNP) and specific assistance to authors, reviewers and editors of a Request for an Opinion, or of other suggestions related to the ICNP. The role of the Judicial Commission is recapitulated, particularly with respect to the processing of such Requests. Selected kinds of nomenclature-related proposals are discussed that are unsuitable as the basis for a Request. Particular emphasis is put on Requests for placing names or epithets on the list of nomina rejicienda, and a dichotomous identification key is provided to guide potential authors of a Request that targets the name of a species or subspecies because of issues with its type strain. To this end, the criteria for the valid publication of such names under the ICNP are revisited. Aspects of other kinds of Requests are also addressed. The study is based on a comprehensive review of all Judicial Opinions issued since the publication of the Approved Lists in 1980. One goal of this paper is to assist potential authors in deciding whether their concern should be the subject of a Request, and if so, in composing it with the greatest chance of success. It is also clarified how to obtain additional help regarding nomenclature-related issues.


Asunto(s)
Ácidos Grasos , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química
3.
Artículo en Inglés | MEDLINE | ID: mdl-37000638

RESUMEN

Judicial Opinion 128 addresses nomenclatural issues related to the names of classes validly published under the International Code of Nomenclature of Prokaryotes. It is confirmed that the common ending -proteobacteria of some class names is not indicative of a joint taxonomic or phylogenetic placement; that the nomenclatural type of Mollicutes Edward and Freundt 1967 (Approved Lists 1980) is Mycoplasmatales Freundt 1955 (Approved Lists 1980); and that the placement of a name on the list of rejected names does not imply that another name with the same spelling but a distinct rank is also placed on that list. The names at the rank of class Anoxyphotobacteria (Gibbons and Murray 1978) Murray 1988, Archaeobacteria Murray 1988, Bacteria Haeckel 1894 (Approved Lists 1980), Firmibacteria Murray 1988, Microtatobiotes Philip 1956 (Approved Lists 1980), Oxyphotobacteria (ex Gibbons and Murray 1978) Murray 1988, Photobacteria Gibbons and Murray 1978 (Approved Lists 1980), Proteobacteria Stackebrandt et al. 1988, Schizomycetes Nägeli 1857 (Approved Lists 1980), Scotobacteria Gibbons and Murray 1978 (Approved Lists 1980) are placed on the list of rejected names. For three common nominative singular suffixes of genus names their genitive singular and nominative plural forms are confirmed: -bacter (-bacteris, -bacteres); -fex (-ficis, -fices); and -genes (-genis, -genes). The class names Aquificae Reysenbach 2002, Chrysiogenetes Garrity and Holt 2002, Chthonomonadetes Lee et al. 2011, Gemmatimonadetes Zhang et al. 2003, Opitutae Choo et al. 2007 and Verrucomicrobiae Hedlund et al. 1998 are orthographically corrected to Aquificia, Chrysiogenia, Chthonomonadia, Gemmatimonadia, Opitutia and Verrucomicrobiia, respectively.


Asunto(s)
Ácidos Grasos , Hylobates , Animales , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química , Bacterias , Proteobacteria
4.
Artículo en Inglés | MEDLINE | ID: mdl-35098918

RESUMEN

In Opinion 103, the request to place the name Spirillum volutans Ehrenberg 1832 (Approved Lists 1980) on the list of rejected names is denied because a neotype may be designated. Similarly, because a neotype may be designated, in Opinion 104 the request to place the name Beijerinckia fluminensis Döbereiner and Ruschel 1958 (Approved Lists 1980) on the list of rejected names is denied. In Opinion 105, it is emphasized that the name Rhodoligotrophos Fukuda et al. 2012 does not contravene the Code. The request to orthographically correct Rhodoligotrophos Fukuda et al. 2012 to Rhodoligotrophus corrig. Fukuda et al. 2012 is denied. Opinion 106 addresses two Requests for an Opinion and results in the placement of the epithet hoagii in Corynebacterium hoagii (Morse 1912) Eberson 1918 (Approved Lists 1980) and Rhodococcus hoagii (Morse 1912) Kämpfer et al. 2014 on the list of rejected specific and subspecific epithets. Since this removes all known available earlier synonyms of Rhodococcus equi (Magnusson 1923) Goodfellow and Alderson 1977 (Approved Lists 1980), the request to conserve the epithet equi in this name is denied. In Opinion 107, Thermomicrobium fosteri Phillips and Perry 1976 (Approved Lists 1980) is placed on the list of rejected names as a nomen dubium et confusum. Opinion 108 denies the request to place Hyphomonas rosenbergii Weiner et al. 2000 on the list of rejected names because the information provided to the Judicial Commission is not sufficient to draw a conclusion on this matter. In Opinion 109, which addresses three Requests for an Opinion, the Judicial Commission denies the requests to place the names Bacillus aerius Shivaji et al. 2006, Bacillus aerophilus Shivaji et al. 2006 and Bacillus stratosphericus Shivaji et al. 2006 on the list of rejected names. Instead, it is concluded that these three names had not met the requirements for valid publication. Likewise, the Judicial Commission concludes in Opinion 110 that the name Actinobaculum massiliense corrig. Greub and Raoult 2006 had not met the requirements for valid publication. The Judicial Commission reaffirms in Opinion 111 that Methanocorpusculum parvum Zellner et al. 1988 is the nomenclatural type of Methanocorpusculum Zellner et al. 1988 and further emphasizes that the species was not in danger of losing this status. These Opinions were ratified by the voting members of the International Committee on Systematics of Prokaryotes.

5.
Artículo en Inglés | MEDLINE | ID: mdl-35947640

RESUMEN

Opinion 112 denies the request to place Seliberia Aristovskaya and Parinkina 1963 (Approved Lists 1980) on the list of rejected names because the information provided is insufficient. For the same reason, Opinion 113 denies the request to reject Shewanella irciniae Lee et al. 2006 and Opinion 114 denies the request to reject the name Enterobacter siamensis Khunthongpan et al. 2014. Opinion 115 rejects the epithet of Moorella thermoautotrophica (Wiegel et al. 1981) Collins et al. 1994, which is regarded as a nomen confusum. To assess the consequences of Rule 8, Opinion 116 revisits names of taxa above the rank of genus which should comprise the stem of the name of a nomenclatural type and a category-specific ending but fail to do so. Such names should be orthographically corrected if the sole error is the inadvertent usage of an incorrect stem or be regarded as illegitimate if otherwise. The necessary corrections are made for a number of names. In Opinion 117, the request to designate Methylothermus subterraneus Hirayama et al. 2011 as the type species of the genus Methylothermus is denied because an equivalent action compatible with the Code was already conducted. In Opinion 118, the possible orthographical correction of the name Flaviaesturariibacter is treated, as are the analogous cases of Fredinandcohnia and Hydrogeniiclostidium. The genus names are corrected to Flaviaestuariibacter, Ferdinandcohnia and Hydrogeniiclostridium, respectively. Opinion 119 concludes that assigning Actinomycetales Buchanan 1917 (Approved Lists 1980) as nomenclatural type of the class Actinobacteria Stackebrandt et al. 1997 would not render that name legitimate if Rule 8 remained retroactive. The request is granted but Actinomycetales is also assigned as type of Actinomycetes Krassilnikov 1949 (Approved Lists 1980). In Opinion 120, the possible orthographical correction of the name Amycolatopsis albidoflavus is treated. It is grammatically corrected to Amycolatopsis albidoflava. Six names which could according to Rule 61 be grammatically corrected by anyone are also corrected. Opinion 121 denies the request to revise Opinion 69 and notes that Opinion 69 does not have the undesirable consequences emphasized in the request. In Opinion 122, the request to reject various taxon names of Mollicutes proposed in 2018 is denied because it is based on misinterpretations of the Code, which are clarified. Alternative ways to solve the perceived problems are outlined. These Opinions were ratified by the voting members of the International Committee on Systematics of Prokaryotes.


Asunto(s)
Ácidos Grasos , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
6.
Int J Syst Evol Microbiol ; 72(12)2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36748499

RESUMEN

Opinion 123 places the epithet of the name Aeromonas punctata on the list of rejected epithets and clarifies the citation of authors of selected names within the genus Aeromonas. Opinion 124 denies the request to place Borreliella on the list of rejected names because the request is based on a misinterpretation of the Code, which is clarified. There are alternative ways to solve the perceived problem. Opinion 125 denies the request to place Lactobacillus fornicalis on the list of rejected names because the provided information does not yield a reason for rejection. Opinion 126 denies the request to place Prolinoborus and Prolinoborus fasciculus on the list of rejected names because a relevant type strain deposit was not examined. Opinion 127 grants the request to assign the strain deposited as ATCC 4720 as the type strain of Agrobacterium tumefaciens, thereby correcting the Approved Lists. These Opinions were ratified by the voting members of the International Committee on Systematics of Prokaryotes.


Asunto(s)
Ácidos Grasos , Filogenia , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Composición de Base , Ácidos Grasos/química
7.
Antonie Van Leeuwenhoek ; 115(10): 1253-1264, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35965303

RESUMEN

Planctomycetes of the family Pirellulaceae are commonly addressed as budding aquatic bacteria with a complex lifestyle. Although this family is well represented by cultured and taxonomically characterized isolates, nearly all of them were obtained from brackish or marine habitats. The examples of described freshwater Pirellulaceae planctomycetes are limited to two species only, Pirellula staley and 'Anatilimnocola aggregata'. In this study, we characterized a novel freshwater planctomycete of the genus 'Anatilimnocola', strain PX40T, which was isolated from a boreal eutrophic lake. Strain PX40T was represented by budding, unpigmented, ellipsoidal to pear-shaped cells, which often occurred in characteristic flower-like rosettes. Cells were covered by bundles of fimbriae; crateriform-like structures were localized on a reproductive cell pole only. These planctomycetes were obligately aerobic, heterotrophic bacteria that utilized various sugars and some polysaccharides, and were highly sensitive to NaCl. Growth occurred in the pH range 5.0-7.5 (with an optimum at pH 6.5-7.0), and at temperatures between 15 and 30 °C (with an optimum at 22-25 °C). The major fatty acids of strain PX40T were C18:1ω9c, C16:0, and 16:1ω7c; cells also contained a wide variety of hydroxy- and dihydroxy-fatty acids and a C31:9 alkene. The major intact polar lipids were diacylglyceryl-(N,N,N)-trimethylhomoserines. The 16S rRNA gene sequence of strain PX40T displayed 96.6% similarity to that of 'Anatilimnocola aggregata' ETA_A8T. The genome of strain PX40T was 8.93 Mb in size and contained one copy of rRNA operon, 76 tRNA genes and 7092 potential protein-coding genes. The DNA G+C content was 57.8%. The ANI value between strain PX40T and 'Anatilimnocola aggregata' ETA_A8T was 78.3%, suggesting that these planctomycetes represent distinct species. We, therefore, propose a novel species of the genus 'Anatilimnocola', 'A. floriformis' sp. nov., with strain PX40T (= KCTC 92369T = VKM B-3621T = UQM 41463T) as the type strain.


Asunto(s)
Lagos , Planctomycetales , Alquenos , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/análisis , Lagos/microbiología , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Cloruro de Sodio , Azúcares
8.
Proc Natl Acad Sci U S A ; 116(17): 8515-8524, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30962365

RESUMEN

The global atmospheric level of methane (CH4), the second most important greenhouse gas, is currently increasing by ∼10 million tons per year. Microbial oxidation in unsaturated soils is the only known biological process that removes CH4 from the atmosphere, but so far, bacteria that can grow on atmospheric CH4 have eluded all cultivation efforts. In this study, we have isolated a pure culture of a bacterium, strain MG08 that grows on air at atmospheric concentrations of CH4 [1.86 parts per million volume (p.p.m.v.)]. This organism, named Methylocapsa gorgona, is globally distributed in soils and closely related to uncultured members of the upland soil cluster α. CH4 oxidation experiments and 13C-single cell isotope analyses demonstrated that it oxidizes atmospheric CH4 aerobically and assimilates carbon from both CH4 and CO2 Its estimated specific affinity for CH4 (a0s) is the highest for any cultivated methanotroph. However, growth on ambient air was also confirmed for Methylocapsa acidiphila and Methylocapsa aurea, close relatives with a lower specific affinity for CH4, suggesting that the ability to utilize atmospheric CH4 for growth is more widespread than previously believed. The closed genome of M. gorgona MG08 encodes a single particulate methane monooxygenase, the serine cycle for assimilation of carbon from CH4 and CO2, and CO2 fixation via the recently postulated reductive glycine pathway. It also fixes dinitrogen and expresses the genes for a high-affinity hydrogenase and carbon monoxide dehydrogenase, suggesting that atmospheric CH4 oxidizers harvest additional energy from oxidation of the atmospheric trace gases carbon monoxide (0.2 p.p.m.v.) and hydrogen (0.5 p.p.m.v.).


Asunto(s)
Beijerinckiaceae , Gases de Efecto Invernadero/metabolismo , Metano/metabolismo , Proteínas Bacterianas/metabolismo , Beijerinckiaceae/clasificación , Beijerinckiaceae/enzimología , Beijerinckiaceae/genética , Beijerinckiaceae/fisiología , Oxidación-Reducción , Oxigenasas/metabolismo , Microbiología del Suelo
9.
Environ Microbiol ; 23(3): 1510-1526, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33325093

RESUMEN

Phycisphaera-like WD2101 'soil group' is one of the as-yet-uncultivated phylogenetic clades within the phylum Planctomycetes. Members of this clade are commonly detected in various terrestrial habitats. This study shows that WD2101 represented one of the major planctomycete groups in 10 boreal peatlands, comprising up to 76% and 36% of all Planctomycetes-affiliated 16S rRNA gene reads in raised bogs and eutrophic fens respectively. These types of peatlands displayed clearly distinct intra-group diversity of WD2101-affiliated planctomycetes. The first isolate of this enigmatic planctomycete group, strain M1803, was obtained from a humic lake surrounded by Sphagnum peat bogs. Strain M1803 displayed 89.2% 16S rRNA gene similarity to Tepidisphaera mucosa and was represented by motile cocci that divided by binary fission and grew under micro-oxic conditions. The complete 7.19 Mb genome of strain M1803 contained an array of genes encoding Planctomycetal type bacterial microcompartment organelle likely involved in l-rhamnose metabolism, suggesting participation of M1803-like planctomycetes in polysaccharide degradation in peatlands. The corresponding cellular microcompartments were revealed in ultrathin cell sections. Strain M1803 was classified as a novel genus and species, Humisphaera borealis gen. nov., sp. nov., affiliated with the formerly recognized WD2101 'soil group'.


Asunto(s)
Bacterias , Suelo , Bacterias/genética , Técnicas de Tipificación Bacteriana , ADN Bacteriano , Ácidos Grasos , Filogenia , Planctomicetos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Suelo
10.
Environ Microbiol ; 22(1): 198-211, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31637799

RESUMEN

The first representative of the phylum Planctomycetes, Planctomyces bekefii, was described nearly one century ago. This morphologically conspicuous freshwater bacterium is a rare example of as-yet-uncultivated prokaryotes with validly published names and unknown identity. We report the results of molecular identification of this elusive bacterium, which was detected in a eutrophic boreal lake in Northern Russia. By using high-performance cell sorting, P. bekefii-like cell rosettes were selectively enriched from lake water. The retrieved 16S rRNA gene sequence was nearly identical to those in dozens of metagenomes assembled from freshwater lakes during cyanobacterial blooms and was phylogenetically placed within a large group of environmental sequences originating from various freshwater habitats worldwide. In contrast, 16S rRNA gene sequence similarity to all currently described members of the order Planctomycetales was only 83%-92%. The metagenome assembled for P. bekefii reached 43% genome coverage and showed the potential for degradation of peptides, pectins, and sulfated polysaccharides. Tracing the seasonal dynamics of P. bekefii by Illumina paired-end sequencing of 16S rRNA gene fragments and by fluorescence in situ hybridization revealed that these bacteria only transiently surpass the detection limit, with a characteristic population peak of up to 104 cells ml-1 following cyanobacterial blooms.


Asunto(s)
Planctomycetales/clasificación , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Hibridación Fluorescente in Situ , Lagos/microbiología , Redes y Vías Metabólicas/genética , Metagenoma , Filogenia , Filogeografía , Planctomycetales/genética , Planctomycetales/aislamiento & purificación , Planctomycetales/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
11.
Int J Syst Evol Microbiol ; 70(2): 1240-1249, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31800383

RESUMEN

The family Gemmataceae accommodates aerobic, chemoorganotrophic planctomycetes, which inhabit various freshwater ecosystems, wetlands and soils. Here, we describe a novel member of this family, strain PX52T, which was isolated from a boreal eutrophic lake in Northern Russia. This isolate formed pink-pigmented colonies and was represented by spherical cells that occurred singly, in pairs or aggregates and multiplied by budding. Daughter cells were highly motile. PX52T was an obligate aerobic chemoorganotroph, which utilized various sugars and some heteropolysaccharides. Growth occurred at pH 5.0-7.5 (optimum pH 6.5) and at temperatures between 10 and 30 °C (optimum 20-25 °C). The major fatty acids were C18 : 1É·7c, C18 : 0 and ßOH-C16:0; the major intact polar lipid was trimethylornithine, and the quinone was MK-6. The complete genome of PX52T was 9.38 Mb in size and contained nearly 8000 potential protein-coding genes. Among those were genes encoding a wide repertoire of carbohydrate-active enzymes (CAZymes) including 33 glycoside hydrolases (GH) and 87 glycosyltransferases (GT) affiliated with 17 and 12 CAZy families, respectively. DNA G+C content was 65.6 mol%. PX52T displayed only 86.0-89.8 % 16S rRNA gene sequence similarity to taxonomically described Gemmataceae planctomycetes and differed from them by a number of phenotypic characteristics and by fatty acid composition. We, therefore, propose to classify it as representing a novel genus and species, Limnoglobus roseus gen. nov., sp. nov. The type strain is strain PX52T (=KCTC 72397T=VKM B-3275T).


Asunto(s)
Genoma Bacteriano , Lagos/microbiología , Filogenia , Planctomycetales/clasificación , Bacterias/genética , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Tamaño del Genoma , Ornitina/análogos & derivados , Ornitina/química , Pigmentación , Planctomycetales/aislamiento & purificación , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
12.
Int J Syst Evol Microbiol ; 69(4): 1195-1201, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30775959

RESUMEN

An isolate of strictly aerobic, pale-pink pigmented bacteria, strain AF10T, was obtained from an organic soil layer in forested tundra, Nadym region, West Siberia. Cells of strain AF10T were Gram-negative, non-motile rods that produced an amorphous extracellular polysaccharide-like substance and formed large cell aggregates in old cultures. These bacteria were chemoorganotrophic, mildly acidophilic and psychrotolerant, and grew between pH 3.5 and 7.0 (optimum, pH 4.5-5.0) and at temperatures between 2 and 30 °C. The preferred growth substrates were sugars and some polysaccharides. The major fatty acids were iso-C15 : 0, C16 : 0, C16 : 1∆9 c and 13,16-dimethyl octacosanedioic acid. The genome of strain AF10T was 6.14 Mbp in size and encoded a wide repertoire of carbohydrate active enzymes. The genomic DNA G+C content was 59.8 mol%. Phylogenetic analysis indicated that strain AF10T is a member of the genus Granulicella, family Acidobacteriaceae, but displays 94.4-98.0 % 16S rRNA gene sequence similarity to currently described members of this genus. On the basis of phenotypic, chemotaxonomic, phylogenetic and genomic analyses, we propose to classify this bacterium as representing a novel species of the genus Granulicella, Granulicellasibirica sp. nov. Strain AF10T (=DSM 104461T=VKM B-3276T) is the type strain.


Asunto(s)
Acidobacteria/clasificación , Bosques , Filogenia , Microbiología del Suelo , Tundra , Acidobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Siberia
13.
Appl Environ Microbiol ; 84(7)2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29374042

RESUMEN

Members of the bacterial order Planctomycetales have often been observed in associations with Crustacea. The ability to degrade chitin, however, has never been reported for any of the cultured planctomycetes although utilization of N-acetylglucosamine (GlcNAc) as a sole carbon and nitrogen source is well recognized for these bacteria. Here, we demonstrate the chitinolytic capability of a member of the family Gemmataceae, Fimbriiglobus ruber SP5T, which was isolated from a peat bog. As revealed by metatranscriptomic analysis of chitin-amended peat, the pool of 16S rRNA reads from F. ruber increased in response to chitin availability. Strain SP5T displayed only weak growth on amorphous chitin as a sole source of carbon but grew well with chitin as a source of nitrogen. The genome of F. ruber SP5T is 12.364 Mb in size and is the largest among all currently determined planctomycete genomes. It encodes several enzymes putatively involved in chitin degradation, including two chitinases affiliated with the glycoside hydrolase (GH) family GH18, GH20 family ß-N-acetylglucosaminidase, and the complete set of enzymes required for utilization of GlcNAc. The gene encoding one of the predicted chitinases was expressed in Escherichia coli, and the endochitinase activity of the recombinant enzyme was confirmed. The genome also contains genes required for the assembly of type IV pili, which may be used to adhere to chitin and possibly other biopolymers. The ability to use chitin as a source of nitrogen is of special importance for planctomycetes that inhabit N-depleted ombrotrophic wetlands.IMPORTANCE Planctomycetes represent an important part of the microbial community in Sphagnum-dominated peatlands, but their potential functions in these ecosystems remain poorly understood. This study reports the presence of chitinolytic potential in one of the recently described peat-inhabiting members of the family Gemmataceae, Fimbriiglobus ruber SP5T This planctomycete uses chitin, a major constituent of fungal cell walls and exoskeletons of peat-inhabiting arthropods, as a source of nitrogen in N-depleted ombrotrophic Sphagnum-dominated peatlands. This study reports the chitin-degrading capability of representatives of the order Planctomycetales.


Asunto(s)
Quitina/metabolismo , Genoma Bacteriano , Planctomycetales/genética , Quitinasas/análisis , Planctomycetales/metabolismo , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Federación de Rusia , Suelo , Humedales
14.
Int J Syst Evol Microbiol ; 68(12): 3796-3806, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30325293

RESUMEN

The phylum Acidobacteria was created in 1997 in order to accommodate a large number of 16S rRNA gene sequences retrieved from various environments in cultivation-independent studies. At present, 26 major sequence clades or subdivisions (SDs) are recognized within this phylum, but only seven of them (SDs 1, 3, 4, 6, 8, 10 and 23) are commonly addressed as containing taxonomically described representatives. Here, we examined the currently explored diversity within the Acidobacteria using the candidate taxonomic unit circumscription system. Based on this analysis, 26 subdivisions were assigned to 15 class-level units, five of which contain described members. These include three earlier established classes Acidobacteriia, Blastocatellia and Holophagae, as well as two as-yet-undescribed groups defined by SDs 6 and 23, which we propose to name Vicinamibacteria classis nov. and Thermoanaerobaculia classis nov., respectively. The former assignment of Thermotomaculum hydrothermale to SD10 was found to be incorrect. This bacterium, therefore, was placed in the family Thermotomaculaceae fam. nov., order Thermotomaculales ord. nov. within the class Holophagae. We also propose establishing a number of high-level taxa to accommodate described representatives of SDs 3, 4, 6 and 23. The family Bryobacteraceae of SD3 Acidobacteria is placed in the order Bryobacterales ord. nov. within the taxonomic range of the class Acidobacteriia. The order Vicinamibacteriales ord. nov. is proposed to accommodate the family Vicinamibacteriaceae of SD6 Acidobacteria. Finally, the family Thermoanaerobaculaceae fam. nov., the order Thermoanaerobaculales ord. nov. are proposed to accommodate the only described representative of SD23, Thermoanaerobaculum aquaticum.


Asunto(s)
Acidobacteria/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
15.
Int J Syst Evol Microbiol ; 68(4): 1265-1270, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29465339

RESUMEN

An isolate of aerobic, Gram-stain-negative, rod-shaped, non-motile and light-pink pigmented bacteria, designated SBC68T, was obtained from slightly decomposed thalli of the lichen Cladonia sp. collected from the forested tundra of north-western Siberia. Cells of this isolate occurred singly, in pairs or in rosettes. These bacteria were acidophilic (optimum growth at pH 4.3-5.6) and mesophilic (optimum growth at 20-30 °C) but were also capable of growth at low temperatures, down to 7 °C. The preferred growth substrates were sugars, some organic acids and lichenan. The major fatty acids were iso-C15 : 0, C16 : 1ω7c, C16 : 0, C16 : 1ω7t, and 13,16-dimethyl octacosanedioic acid. The only quinone was MK-8, and the G+C content of the DNA was 54.7 mol%. SBC68T represented a member of the family Acidobactericeae; the closest taxonomically described relatives were Edaphobacter dinghuensis DHF9T and Granulicella aggregans TPB6028T (97.2 and 97.1 % 16S rRNA gene sequence similarity, respectively). In 16S rRNA gene-based trees, SBC68T clustered together with species of the genus Edaphobacter. However, this isolate differed from all previously described species of the genus Edaphobacter with respect to the pink pigmentation, formation of cell rosettes and substrate utilization pattern. On the basis of these data, strain SBC68T should be considered to represent a novel species of acidobacteria, for which the name Edaphobacter lichenicola sp. nov. is proposed. The type strain is SBC68T (=DSM 104462T=VKM B-3208T).

16.
Antonie Van Leeuwenhoek ; 111(6): 811-823, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29147807

RESUMEN

Members of the phylum Planctomycetes were originally described as freshwater bacteria. Most recent studies, however, address planctomycete diversity in other environments colonized by these microorganisms, including marine and terrestrial ecosystems. This study was initiated in order to revisit the specific patterns of planctomycete diversity in freshwater habitats using cultivation-independent approaches. The specific focus was made on planctomycetes associated with Nuphar lutea (L.) Smith, an emergent macrophyte with floating leaves, which is widespread in the Holarctic. As revealed by Illumina pair-end sequencing of 16S rRNA gene fragments, the bacterial assemblages colonizing floating leaf blades of waterlilies sampled from two different boreal lakes displayed similar composition but were distinct from the planktonic bacterial communities. 16S rRNA gene fragments from the Planctomycetes comprised 0.1-1 and 1-2.2% of total 16S rRNA gene reads retrieved from water samples and plant leaves, respectively. Planktonic planctomycetes were mostly affiliated with the class Planctomycetaceae (77-97%), while members of the Phycisphaerae were less abundant (3-22%). The relative proportion of the latter group, however, increased by 13-45% on leaves of N. lutea. The Phycisphaera-related group WD2101, Pirellula-like planctomycetes, as well as Gemmata, Zavarzinella and Planctopirus species were the most abundant groups of planctomycetes associated with plant leaves, which may suggest their involvement in the degradation of plant-derived organic matter.


Asunto(s)
Planctomycetales/genética , Bacterias Aerobias/genética , ARN Ribosómico 16S/genética , Microbiología del Suelo , Microbiología del Agua
17.
Antonie Van Leeuwenhoek ; 111(6): 801-809, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29134393

RESUMEN

Members of the phylum Planctomycetes are common inhabitants of northern Sphagnum-dominated wetlands. Evidence is accumulating that, in these environments, some planctomycetes may be involved in degrading polymeric organic matter. The experimental data, however, remain scarce due to the low number of characterized representatives of this phylum. In a previous study, we used metatranscriptomics to assess the activity response of peat-inhabiting microorganisms to biopolymers abundantly present in native peat. The community responses to cellulose, xylan, pectin, and chitin availability were analysed relative to unamended controls. Here, we re-analysed these metatranscriptomes and retrieved a total of 1,602,783 rRNA and 35,522 mRNA sequences affiliated with the Planctomycetes. Each of the four polymers induced specific planctomycete responses. These were most pronounced on chitin. The two groups with increased 16S rRNA transcript pools were Gemmata- and Phycisphaera-like planctomycetes. Among uncultivated members of the Planctomycetaceae, two increased transcript pools were detected in pectin-amended samples and belonged to Pirellula-like bacteria. The analysis of taxonomically assigned mRNA reads confirmed the specific response of Gemmata-related planctomycetes to chitin amendment suggesting the presence of chitinolytic capabilities in these bacteria.


Asunto(s)
Planctomycetales/genética , ARN Ribosómico 16S/genética , Suelo , Microbiología del Suelo , Humedales
18.
Int J Syst Evol Microbiol ; 67(2): 498-501, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27902282

RESUMEN

The phylum Acidobacteria represents one of the highly diverse but poorly characterized phylogenetic groups of the domain Bacteria. The taxonomically described acidobacteria belong to 27 genera and 49 species, which represent subdivisions 1, 3, 4, 6, 8, 10 and 23 of this phylum. However, the corresponding family ranks have been defined only for some of these characterized micro-organisms. Here, we suggest the establishment of a novel family, Bryobacteraceae fam. nov., to accommodate taxonomically described members of subdivision 3 Acidobacteria. This family is characterized by Gram-stain-negative, non-spore-forming and non-motile rods, which divide by binary fission. Members of this family are mildly acidophilic, mesophilic, aerobic and facultatively anaerobic chemoheterotrophs that utilize various sugars and polysaccharides. The major fatty acids are iso-C15 : 0 and C16 : 1ω7c; the cells also contain significant amounts of 13,16-dimethyloctacosanedioic (iso-diabolic) acid. Currently, the family comprises the genera Bryobacter and Paludibaculum.


Asunto(s)
Acidobacteria/clasificación , Filogenia , ADN Bacteriano/genética , Ácidos Grasos/química , ARN Ribosómico 16S/genética
19.
Int J Syst Evol Microbiol ; 67(9): 3583-3589, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28829024

RESUMEN

Two strains of aerobic, budding, pink-pigmented bacteria, P12T and P515, were isolated from a lichen-dominated peatland and a forested tundra soil of north-western Siberia, respectively. Cells of these isolates were represented by non-motile spheres that occurred singly or were arranged in short chains and aggregates. While growing on solid media, cells of strains P12T and P515 attached to the surface by means of holdfast-like appendages. These isolates were mildly acidophilic (optimum growth at pH 5.5-6.0), psychrotolerant bacteria, which displayed tolerance of low temperatures (4-15 °C), grew optimally at 15-22 °C and did not grow at temperatures above 28 °C. The preferred growth substrates were sugars and some heteropolysaccharides. The major fatty acids were C18 : 1ω9c, C16 : 0 and C14 : 0. Trimethylornithine lipid was the major polar lipid. The only quinone was MK-6, and the G+C content of the DNA was 61.2-62.2 mol%. Strains P12T and P515 possessed identical 16S rRNA gene sequences, which affiliated them with the family Isosphaeraceae, order Planctomycetales, and these displayed the highest similarity (93-94 %) to 16S rRNA gene sequences from members of the genus Singulisphaera. However, the signature fatty acid of species of the genus Singulisphaera, i.e. C18 : 2ω6c,12c, was absent in cells of strains P12T and P515. They also differed from members of the genus Singulisphaera by substrate utilization pattern and a number of physiological characteristics. Based on these data, the novel isolates should be considered as representing a novel genus and species of planctomycetes, for which the name Tundrisphaera lichenicola gen. nov., sp. nov, is proposed. The type strain is P12T (=LMG 29571T=VKM B-3044T).


Asunto(s)
Líquenes , Filogenia , Planctomycetales/clasificación , Microbiología del Suelo , Tundra , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Planctomycetales/genética , Planctomycetales/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Siberia , Vitamina K 2/análogos & derivados , Vitamina K 2/química
20.
Int J Syst Evol Microbiol ; 67(2): 218-224, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27902209

RESUMEN

An aerobic, budding, dark pink to red-pigmented bacterium was isolated from an acidic boreal Sphagnum peat bog and designated strain SP5T. Cells of this strain were non-motile spheres that were uniformly covered with crateriform pits and fimbria, and tended to form aggregates during growth in liquid media. Strain SP5T was capable of growth between pH 4.0 and pH 6.8 (optimum at pH 5.5-6.0) and at temperatures between 10 and 30 °C (optimum at 20-25 °C). The preferred growth substrates were sugars and some heteropolysaccharides. The major fatty acids were C20 : 1ω9c, C16 : 1ω9c and C16 : 0, and the major polar lipid was trimethylornithine. Cells contained also significant amounts of bound (ω-1)OH-C30 : 1 fatty acid. The quinone was menaquinone-6, and the G+C content of the DNA was 60.7 mol%. Strain SP5T was a member of the order Planctomycetales and belonged to the phylogenetic lineage defined by the genus Gemmata. It displayed 88 and 89 % 16S rRNA gene sequence similarity to Gemmata obscuriglobusUQM 2246T and 'Gemmata massiliana' IIL30, 89 % to Zavarzinella formosa A10T and 86 % to Telmatocola sphagniphila SP2T. However, strain SP5T differed from members of these genera by cell morphology, substrate utilization pattern and fatty acid composition. Based on these data, the novel isolate should be considered as representing a novel species of a new genus of planctomycetes, for which the name Fimbriiglobus ruber gen. nov., sp. nov, is proposed. The type strain is SP5T (=LMG 29572T=VKM B-3045T). We also suggest the establishment of a novel family, Gemmataceaefam. nov., which includes the phylogenetically related genera Gemmata, Zavarzinella, Telmatocola and Fimbriiglobus.


Asunto(s)
Filogenia , Microbiología del Suelo , Sphagnopsida/microbiología , Humedales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Ornitina/química , Pigmentación , Planctomycetales/clasificación , Planctomycetales/genética , Planctomycetales/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda