RESUMEN
We present the results of the automated post-processing of Mueller microscopy images of skin tissue models with a new fast version of the algorithm of density-based spatial clustering of applications with noise (FastDBSCAN) and discuss the advantages of its implementation for digital histology of tissue. We demonstrate that using the FastDBSCAN algorithm, one can produce the diagnostic segmentation of high resolution images of tissue by several orders of magnitude faster and with high accuracy (>97%) compared to the original version of the algorithm.
Asunto(s)
Algoritmos , Microscopía , Piel/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodosRESUMEN
Calcium phosphate (CaP) minerals have shown great promise as bone replacement materials due to their similarity to the mineral phase of natural bone. In addition to biocompatibility and osseointegration, the prevention of infection is crucial, especially due to the high concern of antibiotic resistance. In this context, a controlled drug release as well as biodegradation are important features which depend on the porosity of CaP. An increase in porosity can be achieved by using nanoparticles (NPs), which can be processed to supraparticles, combining the properties of nano- and micromaterials. In this study, Cu-doped CaP supraparticles were prepared to improve the bone substitute properties while providing antibacterial effects. In this context, a modified sol-gel process was used for the synthesis of CaP NPs, where a Ca/P molar ratio of 1.10 resulted in the formation of crystalline ß-tricalcium phosphate (ß-TCP) after calcination at 1000 °C. In the next step, CaP NPs with Cu2+ (0.5-15.0 wt%) were processed into supraparticles by a spray drying method. Cu release experiments of the different Cu-doped CaP supraparticles demonstrated a long-term sustained release over 14 days. The antibacterial properties of the supraparticles were determined against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, where complete antibacterial inhibition was achieved using a Cu concentration of 5.0 wt%. In addition, cell viability assays of the different CaP supraparticles with human telomerase-immortalized mesenchymal stromal cells (hMSC-TERT) exhibited high biocompatibility with particle concentrations of 0.01 mg mL-1 over 72 hours.
RESUMEN
Prosthesis loosening due to lack of osteointegration between an implant and surrounding bone tissue is one of the most common causes of implant failure. Further, bacterial contamination and biofilm formation onto implants represent a serious complication after surgery. The enhancement of osteointegration can be achieved by using bioconductive materials that promote biological responses in the body, stimulating bone growth and thus bonding to tissue. Through the incorporation of antibacterial substances in bioconductive, biodegradable calcium phosphate (CaP) coatings, faster osteointegration and bactericidal properties can be achieved. In this study, Cu-doped CaP supraparticles are spray-dried and suspension-sprayed CaP ceramic coatings with antibacterial properties are prepared using high-velocity suspension flame spraying (HVSFS). The objective was to increase the coatings' porosity and investigate which Cu-doped supraparticles have the strongest antibacterial properties when introduced into the coating layers. Biocompatibility was tested on human Osteosarcoma cells MG63. A porosity of at least 13% was achieved and the supraparticles could be implemented, enhancing it up to 16%. The results showed that the addition of Cu-doped supraparticles did not significantly reduce the number of viable cells compared to the Cu-free sample, demonstrating good biocompatibility. The antimicrobial activity was assessed against the bacterial strains Escherichia coli and Staphylococcus aureus, with Safe Airborne Antibacterial testing showing a significant reduction in both Gram-positive and Gram-negative strains on the Cu-doped coatings.
RESUMEN
In order to maximally reduce the toxicity of fullerenol (the first derivative of C60, FD-C60), and increase its biomedical efficiency, the second derivative SD-C60 (3HFWC, Hyper-Harmonized Hydroxylated Fullerene Water Complex) was created. Several different methods were applied in the comparative characterization of FD-C60 and SD-C60 with the same OH groups in their core. FD-C60 as an individual structure was about 1.3 nm in size, while SD-C60 as an individual structure was 10-30 nm in size. Based on ten physicochemical methods and techniques, FD-C60 and SD-C60 were found to be two different substances in terms of size, structure, and physicochemical properties; FD-C60, at 100 °C, had endothermic characteristics, while SD-C60, at 133 °C, had exothermic characteristics; FD-C60 did not have water layers, while SD-C60 had water layers; the zeta potential of FD-C60 was -25.85 mV, while it was -43.29 mV for SD-C60. SD-C60 is a promising substance for use in cosmetics and pharmaceuticals.
RESUMEN
Robotic systems facilitate relatively simple human-robot interaction for non-robot experts, providing the flexibility to implement different processes. In this context, shorter process times, as well as an increased product and process quality could be achieved. Robots short time-consuming processes, take over ergonomically unfavorable tasks and work efficiently all the time. In addition, flexible production is possible while maintaining or even increasing safety. This study describes the successful development of a dual-arm robot-based modular infrastructure and the establishment of an automated process for the reproducible production of nanoparticles. As proof of concept, a manual synthesis protocol for silica nanoparticle preparation with a diameter of about 200 nm as building blocks for photonic crystals was translated into a fully automated process. All devices and components of the automated system were optimized and adapted according to the synthesis requirements. To demonstrate the benefit of the automated nanoparticle production, manual (synthesis done by lab technicians) and automated syntheses were benchmarked. To this end, different processing parameters (time of synthesis procedure, accuracy of dosage etc.) and the properties of the produced nanoparticles were compared. We demonstrate that the use of the robot not only increased the synthesis accuracy and reproducibility but reduced the personnel time and costs up to 75%.
RESUMEN
Printer toner particles (TPs) are a common, potentially hazardous substance, with an unclear toxicological impact on the respiratory mucosa. Most of the airways surface is covered by a ciliated respiratory mucosa, therefore appropriate tissue models of the respiratory epithelium with a high in vivo correlation are necessary for in vitro evaluation of airborne pollutants toxicology and the impact on the functional integrity. The aim of this study is the evaluation of TPs toxicology in a human primary cell-based air-liquid-interface (ALI) model of respiratory mucosa. The TPs were analyzed and characterized by scanning electron microscopy, pyrolysis and X-ray fluorescence spectrometry. ALI models of 10 patients were created using the epithelial cells and fibroblasts derived from nasal mucosa samples. TPs were applied to the ALI models via a modified Vitrocell® cloud and submerged in the dosing 0.89 - 892.96 µg/ cm2. Particle exposure and intracellular distribution were evaluated by electron microscopy. The MTT assay and the comet assay were used to investigate cytotoxicity and genotoxicity, respectively. The used TPs showed an average particle size of 3 - 8 µm. Mainly carbon, hydrogen, silicon, nitrogen, tin, benzene and benzene derivates were detected as chemical ingredients. By histomorphology and electron microscopy we observed the development of a highly functional, pseudostratified epithelium with a continuous layer of cilia. Using electron microscopy, TPs could be detected on the cilia surface and also intracellularly. Cytotoxicity was detected from 9 µg/ cm2 and higher, but no genotoxicity after ALI and submerged exposure. The ALI with primary nasal cells represents a highly functional model of the respiratory epithelium in terms of histomorphology and mucociliary differentiation. The toxicological results indicate a weak TP-concentration-dependent cytotoxicity. AVAILABILITY OF DATA AND MATERIALS: The datasets used and analysed during the current study are available from the corresponding author on reasonable request.
Asunto(s)
Benceno , Células Epiteliales , Humanos , Mucosa Nasal , Mucosa Respiratoria , CiliosRESUMEN
Bacterial infection is a crucial complication in implant restoration, in particular in permanent skin-penetrating implants. Therein, the resulting gap between transcutaneous implant and skin represents a permanent infection risk, limiting the field of application and the duration of application. To overcome this limitation, a tight physiological connection is required to achieve a biological and mechanical welding for a long-term stable closure including self-healing probabilities. This study describes a new approach, wherein the implant is connected covalently to a highly porous electrospun fleece featuring physiological dermal integration potential. The integrative potential of the scaffold is shown in vitro and confirmed in vivo, further demonstrating tissue integration by neovascularization, extracellular matrix formation, and prevention of encapsulation. To achieve a covalent connection between fleece and implant surface, self-initiated photografting and photopolymerization of hydroxyethylmethacrylate is combined with a new crosslinker (methacrylic acid coordinated titanium-oxo clusters) on proton-abstractable implant surfaces. For implant modification, the attached fleece is directed perpendicular from the implant surface into the surrounding dermal tissue. First in vitro skin implantations demonstrate the implants' dermal integration capability as well as wound closure potential on top of the fleece by epithelialization, establishing a bacteria-proof and self-healing connection of skin and transcutaneous implant.
Asunto(s)
Biomimética , Prótesis e Implantes , Humanos , Piel , Titanio , Neovascularización Patológica , Propiedades de SuperficieRESUMEN
The development of novel fibrous biomaterials and further processing of medical devices is still challenging. For instance, titanium(IV) oxide is a well-established biocompatible material, and the synthesis of TiOx particles and coatings via the sol-gel process has frequently been published. However, synthesis protocols of sol-gel-derived TiOx fibers are hardly known. In this publication, the authors present a synthesis and fabrication of purely sol-gel-derived TiOx fiber fleeces starting from the liquid sol-gel precursor titanium ethylate (TEOT). Here, the α-hydroxy-carboxylic acid lactic acid (LA) was used as a chelating ligand to reduce the reactivity towards hydrolysis of TEOT enabling a spinnable sol. The resulting fibers were processed into a non-woven fleece, characterized with FTIR, 13C-MAS-NMR, XRD, and screened with regard to their stability in physiological solution. They revealed an unexpected dependency between the LA content and the dissolution behavior. Finally, in vitro cell culture experiments proved their potential suitability as an open-mesh structured scaffold material, even for challenging applications such as therapeutic medicinal products (ATMPs).
RESUMEN
A fine balance of regulatory (Treg) and conventional CD4+ T cells (Tconv) is required to prevent harmful immune responses, while at the same time ensuring the development of protective immunity against pathogens. As for many cellular processes, sphingolipid metabolism also crucially modulates the Treg/Tconv balance. However, our understanding of how sphingolipid metabolism is involved in T cell biology is still evolving and a better characterization of the tools at hand is required to advance the field. Therefore, we established a reductionist liposomal membrane model system to imitate the plasma membrane of mouse Treg and Tconv with regards to their ceramide content. We found that the capacity of membranes to incorporate externally added azide-functionalized ceramide positively correlated with the ceramide content of the liposomes. Moreover, we studied the impact of the different liposomal preparations on primary mouse splenocytes in vitro. The addition of liposomes to resting, but not activated, splenocytes maintained viability with liposomes containing high amounts of C16-ceramide being most efficient. Our data thus suggest that differences in ceramide post-incorporation into Treg and Tconv reflect differences in the ceramide content of cellular membranes.
RESUMEN
A novel method for the synthesis of luminescent SiO(2)/calcium phosphate (CaP):Eu(3+) core-shell nanoparticles (NPs) was developed via a sol-gel route followed by annealing at a temperature of 800 °C. The object of this study was the investigation of the effect of pH on the formation of a CaP shell around the silica core. The resulting annealed NPs exhibited an amorphous SiO(2) core and a crystalline luminescent shell. The formation of a CaP layer was possible at pH below 4.5 and above 6.5 during the coating step. The crystal structure of the shell was studied by X-ray diffraction analysis. Hydroxyapatite (HAp) and α-tricalcium phosphate were detected as crystal phases of the surrounding layer. However, NPs produced under basic conditions exhibited a higher crystallinity of the CaP layer than did samples coated at pH below 4.5. In the pH interval between 4.5 and 6.5, no shell growth but the formation of secondary NPs containing CaO and Ca(OH)(2) was observed. Furthermore, SiO(2)/CP:Eu(3+) core-shell NPs were investigated by transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, inductively coupled plasma optical emission spectrometry, and photoluminescence spectroscopy. The resulting HAp-coated NPs were successfully tested by a cell-culture-based viability assay with respect to a later application as a luminescent marker for biomedical applications.
Asunto(s)
Fosfatos de Calcio/química , Europio/química , Luminiscencia , Nanopartículas/química , Dióxido de Silicio/química , Animales , Células Cultivadas , Concentración de Iones de Hidrógeno , Ratones , Tamaño de la Partícula , Propiedades de Superficie , Difracción de Rayos XRESUMEN
Significance: Definitive diagnostics of many diseases is based on the histological analysis of thin tissue cuts with optical white light microscopy. Extra information on tissue structural properties obtained with polarized light would help the pathologist to improve the accuracy of his diagnosis.
Aim: We report on using Mueller matrix microscopy data, logarithmic decomposition, and polarized Monte Carlo (MC) modeling for qualitative and quantitative analysis of thin tissue cuts to extract the information on tissue microstructure that is not available with a conventional white light microscopy.
Approach: Unstained cuts of human skin equivalents were measured with a custom-built liquid-crystal-based Mueller microscope in transmission configuration. To interpret experimental data, we performed the simulations with a polarized MC algorithm for scattering anisotropic media. Several optical models of tissue (spherical scatterers within birefringent host medium, and combination of spherical and cylindrical scatterers within either isotropic or birefringent host medium) were tested.
Results: A set of rotation invariants for the logarithmic decomposition of a Mueller matrix was derived to rule out the impact of sample orientation. These invariants were calculated for both simulated and measured Mueller matrices of the dermal layer of skin equivalents. We demonstrated that only the simulations with a model combining both spherical and cylindrical scatterers within birefringent host medium reproduced the experimental trends in optical properties of the dermal layer (linear retardance, linear dichroism, and anisotropic linear depolarization) with layer thickness.
Conclusions: Our studies prove that Mueller polarimetry provides relevant information not only on a size of dominant scatterers (e.g., cell nuclei versus subwavelength organelles) but also on its shape (e.g., cells versus collagen fibers). The latter is directly related to the state of extracellular collagen matrix, which is often affected by early pathology. Hence, using polarimetric data can help to increase the accuracy of diagnosis.
Asunto(s)
Microscopía de Polarización/instrumentación , Imagen Óptica/métodos , Refractometría/métodos , Piel/diagnóstico por imagen , Humanos , Método de Montecarlo , Fenómenos Ópticos , Fantasmas de Imagen , Dispersión de RadiaciónRESUMEN
The exposure of humans to nano-and microplastic particles (NMPs) is an issue recognized as a potential health hazard by scientists, authorities, politics, non-governmental organizations and the general public. The concentration of NMPs in the environment is increasing concomitantly with global plastic production and the usage of plastic materials. NMPs are detectable in numerous aquatic organisms and also in human samples, therefore necessitating a risk assessment of NMPs for human health. So far, a comprehensive risk assessment of NMPs is hampered by limited availability of appropriate reference materials, analytical obstacles and a lack of definitions and standardized study designs. Most studies conducted so far used polystyrene (PS) spheres as a matter of availability, although this polymer type accounts for only about 7% of total plastic production. Differently sized particles, different concentration and incubation times, and various biological models have been used, yielding hardly comparable data sets. Crucial physico-chemical properties of NMPs such as surface (charge, polarity, chemical reactivity), supplemented additives and adsorbed chemicals have been widely excluded from studies, although in particular the surface of NMPs determines the interaction with cellular membranes. In this manuscript we give an overview about the critical parameters which should be considered when performing risk assessments of NMPs, including novel reference materials, taking into account surface modifications (e.g., reflecting weathering processes), and the possible role of NMPs as a substrate and/or carrier for (pathogenic) microbes. Moreover, we make suggestions for biological model systems to evaluate immediate toxicity, long-term effects and the potential of NMPs to cross biological barriers. We are convinced that standardized reference materials and experimental parameters along with technical innovations in (nano)-particle sampling and analytics are a prerequisite for the successful realization of conclusive human health risk assessments of NMPs.
Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Organismos Acuáticos , Humanos , Microplásticos , Nanopartículas/análisis , Plásticos/toxicidad , Poliestirenos , Contaminantes Químicos del Agua/análisisRESUMEN
Recombinant antibodies are promising tools for a wide range of bioanalytical and medical applications. However, the chemical modification of such molecules can be challenging, which limits their broader utilization. Here we describe a universal method for the site-specific labeling of antibody fragments and protein ligands by genetically fusing them to an engineered version of the human DNA-repair enzyme O(6)-alkyllguanine DNA alkyltransferase (AGT), known as SNAP-Tag (1-3) . Substrates containing O(6)-benzylguanine are covalently bound to the fusion proteins via a stable thioether bond in a rapid and highly specific self-labeling reaction. The coupling is site-directed, allowing the design and synthesis of antibody conjugates with predefined stoichiometry. We cloned a series of ligand SNAP-Tag fusion proteins and expressed them in HEK 293T cells. The antibody/ligand-fusions were characterized by labeling with different fluorophores, labeling with biotin, or by coupling them to fluorescent nanobeads, followed by analysis by flow cytometry and confocal microscopy. All ligands retained their original antigen-binding properties when fused to the SNAP-Tag. The combination of recombinant antibodies or protein ligands with the SNAP-Tag facilitates simple and efficient covalent modification with a broad range of substrates, thus providing a useful and advantageous alternative to existing coupling strategies.
Asunto(s)
O(6)-Metilguanina-ADN Metiltransferasa/genética , Ingeniería de Proteínas/métodos , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/metabolismo , Animales , Sitios de Unión , Biotina/metabolismo , Ligando CD30/metabolismo , Células CHO , Cricetinae , Cricetulus , Citometría de Flujo , Colorantes Fluorescentes/metabolismo , Humanos , Antígeno Ki-1/inmunología , Ligandos , Ratones , Microscopía Confocal , Microesferas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Dióxido de Silicio/química , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/inmunología , Coloración y Etiquetado , Especificidad por SustratoRESUMEN
Mueller microscopy studies of fixed unstained histological cuts of human skin models were combined with an analysis of experimental data within the framework of differential Mueller matrix (MM) formalism. A custom-built Mueller polarimetric microscope was used in transmission configuration for the optical measurements of skin tissue model adjacent cuts of various nominal thicknesses (5 to 30 µm). The maps of both depolarization and polarization parameters were calculated from the corresponding microscopic MM images by applying a logarithmic Mueller matrix decomposition (LMMD) pixelwise. The parameters derived from LMMD of measured tissue cuts and the intensity of transmitted light were used for an automated segmentation of microscopy images to delineate dermal and epidermal layers. The quadratic dependence of depolarization parameters and linear dependence of polarization parameters on thickness, as predicted by the theory, was confirmed in our measurements. These findings pave the way toward digital histology with polarized light by presenting the combination of optimal optical markers, which allows mitigating the impact of tissue cut thickness fluctuations and increases the contrast of polarimetric images for tissue diagnostics.
Asunto(s)
Técnicas Histológicas/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Óptica/métodos , Algoritmos , Humanos , Microscopía de Polarización , Modelos Biológicos , Piel/diagnóstico por imagenRESUMEN
Radioresistance is an important cause of head and neck cancer therapy failure. Zinc oxide nanoparticles (ZnO-NP) mediate tumor-selective toxic effects. The aim of this study was to evaluate the potential for radiosensitization of ZnO-NP. The dose-dependent cytotoxicity of ZnO-NP20 nm and ZnO-NP100 nm was investigated in FaDu and primary fibroblasts (FB) by an MTT assay. The clonogenic survival assay was used to evaluate the effects of ZnO-NP alone and in combination with irradiation on FB and FaDu. A formamidopyrimidine-DNA glycosylase (FPG)-modified single-cell microgel electrophoresis (comet) assay was applied to detect oxidative DNA damage in FB as a function of ZnO-NP and irradiation exposure. A significantly increased cytotoxicity after FaDu exposure to ZnO-NP20 nm or ZnO-NP100 nm was observed in a concentration of 10 µg/mL or 1 µg/mL respectively in 30 µg/mL of ZnO-NP20 nm or 20 µg/mL of ZnO-NP100 nm in FB. The addition of 1, 5, or 10 µg/mL ZnO-NP20 nm or ZnO-NP100 nm significantly reduced the clonogenic survival of FaDu after irradiation. The sub-cytotoxic dosage of ZnO-NP100 nm increased the oxidative DNA damage compared to the irradiated control. This effect was not significant for ZnO-NP20 nm. ZnO-NP showed radiosensitizing properties in the sub-cytotoxic dosage. At least for the ZnO-NP100 nm, an increased level of oxidative stress is a possible mechanism of the radiosensitizing effect.
RESUMEN
A study of the influence of the local environment on the light-induced luminescence enhancement of CdSe/ZnS quantum dots (QD) embedded in silica colloids that are dispersed in various solvents is presented. The photoluminescence of the embedded QD is enhanced up to a factor of ten upon photoactivation by ultraviolet or visible light. This enhancement is strongly dependent on the local environment. The thickness-dependent permeability of the silica shell covering the QD controls the influence of the solvent on the QD. If foreign ions are present the activation state is stabilized after termination of the activation, whereas in their absence the process is partially reversible. A new qualitative model for the photoactivation of QD in various environments is developed. It comprises light-induced passivation and subsequent oxidation processes. The embedded QD also retain their fluorescence quantum yield inside living cells. Moreover, they can be activated for many hours in living cells by laser radiation in the visible regime.
Asunto(s)
Compuestos de Cadmio/química , Puntos Cuánticos , Compuestos de Selenio/química , Dióxido de Silicio/química , Sulfuros/química , Compuestos de Zinc/química , Coloides , Microscopía Electrónica de Transmisión , FotoquímicaRESUMEN
Nanoparticles (NPs) in biotechnology hold great promise for revolutionizing medical treatments and therapies. In order to bring NPs into clinical application there is a number of preclinical in vitro and in vivo tests, which have to be applied before. The initial in vitro evaluation includes a detailed physicochemical characterization as well as biocompatibility tests, among others. For determination of biocompatibility at the cellular level, the correct choice of the in vitro assay as well as NP pretreatment is absolutely essential. There are a variety of assay technologies available that use standard plate readers to measure metabolic markers to estimate the number of viable cells in culture. Each cell viability assay has its own set of advantages and disadvantages. Regardless of the assay method chosen, the major factors critical for reproducibility and success include: (1) choosing the right assay after comparing optical NP properties with the read-out method of the assay, (2) verifying colloidal stability of NPs in cell culture media, (3) preparing a sterile and stable NP dispersion in cell culture media used in the assay, (4) using a tightly controlled and consistent cell model allowing appropriate characterization of NPs. This chapter will briefly summarize these different critical points, which can occur during biocompatibility screening applications of NPs.
Asunto(s)
Supervivencia Celular/efectos de los fármacos , Ensayo de Materiales/métodos , Nanopartículas/química , Nanopartículas/toxicidad , Células CACO-2 , Coloides/química , Medios de Cultivo/química , Espectroscopía Dieléctrica , Sistemas de Liberación de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Tamaño de la PartículaRESUMEN
New multifunctional nanoparticles (NPs) that can be used as contrast agents (CA) in different imaging techniques, such as photoluminescence (PL) microscopy and magnetic resonance imaging (MRI), open new possibilities for medical imaging, e.g., in the fields of diagnostics or tissue characterization in regenerative medicine. The focus of this study is on the synthesis and characterization of CaF2:(Tb3+,Gd3+) NPs. Fabricated in a wet-chemical procedure, the spherical NPs with a diameter of 5-10 nm show a crystalline structure. Simultaneous doping of the NPs with different lanthanide ions, leading to paramagnetism and fluorescence, makes them suitable for MR and PL imaging. Owing to the Gd3+ ions on the surface, the NPs reduce the MR T1 relaxation time constant as a function of their concentration. Thus, the NPs can be used as a MRI CA with a mean relaxivity of about r = 0.471 mL·mg-1·s-1. Repeated MRI examinations of four different batches prove the reproducibility of the NP synthesis and determine the long-term stability of the CAs. No cytotoxicity of NP concentrations between 0.5 and 1 mg·mL-1 was observed after exposure to human dermal fibroblasts over 24 h. Overall this study shows, that the CaF2:(Tb3+,Gd3+) NPs are suitable for medical imaging.
RESUMEN
Long-term stability during storage (shelf-life) is one major criterion for the use of a material as medical device. This study aimed to investigate the ageing process of beta-tricalcium phosphate/monocalcium phosphate cement powders when stored in sealed containers at ambient conditions. This kind of cement type is of interest because it is forming dicalcium phosphate dihydrate (brushite) when set, which is in contrast to hydroxyapatite resorbable in physiological conditions. The stability of cements was checked by either measuring the phase composition of powders as well as the setting time and compressive strength when mixed with sodium citrate as liquid. Critical factors influencing ageing were found to be temperature, humidity and the mixing regime of the powders. Mechanically mixed cement powders which were stored in normal laboratory atmosphere (22 degrees C, 60% rel. humidity) converted to dicalcium phosphate anhydrous (monetite) within a few days; this could be mechanistically related to a dissolution/precipitation process since humidity condensed on the particles' surfaces and acted as reaction medium. Various storage conditions were found to be effective in prolonging cement stability which were in order of effectiveness: adding solid citric acid retardant>dry argon atmosphere=gentle mixing (minimal mechanical energy input) low temperature.
Asunto(s)
Cementos para Huesos/análisis , Cementos para Huesos/química , Fosfatos de Calcio/análisis , Fosfatos de Calcio/química , Ensayo de Materiales/métodos , Materiales Biocompatibles/análisis , Materiales Biocompatibles/química , Fuerza Compresiva , Estabilidad de Medicamentos , Almacenaje de Medicamentos/métodos , Humedad , Polvos , TemperaturaRESUMEN
Fluorescence spectroscopy has been shown to be a useful tool for a broad variety of biological and medical applications. Many of the analytical methods, as used for tumor marker and gene mutation detection, recognition of pathogens or monitoring of cell-related processes, are based on the labeling of the investigating object with luminescent nanoparticles. Owing to their size, which is comparable to that of biomolecules, and to their extraordinary optical properties, luminescent nanoparticles could well improve the sensitivity and flexibility of current detection techniques. This article provides a general overview of the synthesis, properties and application of luminescent semiconductor, metal and inorganic nanoparticles for in vitro and in vivo diagnostics, also reflecting the aspect of biocompatibility.