Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Methods ; 19(8): 1004-1012, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35927475

RESUMEN

The advent of neuroimaging has increased our understanding of brain function. While most brain-wide functional imaging modalities exploit neurovascular coupling to map brain activity at millimeter resolutions, the recording of functional responses at microscopic scale in mammals remains the privilege of invasive electrophysiological or optical approaches, but is mostly restricted to either the cortical surface or the vicinity of implanted sensors. Ultrasound localization microscopy (ULM) has achieved transcranial imaging of cerebrovascular flow, up to micrometre scales, by localizing intravenously injected microbubbles; however, the long acquisition time required to detect microbubbles within microscopic vessels has so far restricted ULM application mainly to microvasculature structural imaging. Here we show how ULM can be modified to quantify functional hyperemia dynamically during brain activation reaching a 6.5-µm spatial and 1-s temporal resolution in deep regions of the rat brain.


Asunto(s)
Microscopía , Fenómenos Fisiológicos del Sistema Nervioso , Animales , Encéfalo/fisiología , Mamíferos , Microburbujas , Microscopía/métodos , Microvasos , Ratas
2.
Neuroimage ; 209: 116467, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31846757

RESUMEN

Hemodynamic functional ultrasound imaging (fUS) of neural activity provides a unique combination of spatial coverage, spatiotemporal resolution and compatibility with freely moving animals. However, deep and transcranial monitoring of brain activity and the imaging of dynamics in slow-flowing blood vessels remains challenging. To enhance fUS capabilities, we introduce biomolecular hemodynamic enhancers based on gas vesicles (GVs), genetically encodable ultrasound contrast agents derived from buoyant photosynthetic microorganisms. We show that intravenously infused GVs enhance ultrafast Doppler ultrasound contrast and visually-evoked hemodynamic contrast in transcranial fUS of the mouse brain. This hemodynamic contrast enhancement is smoother than that provided by conventional microbubbles, allowing GVs to more reliably amplify neuroimaging signals.


Asunto(s)
Encéfalo/diagnóstico por imagen , Medios de Contraste , Neuroimagen Funcional/métodos , Hemodinámica , Aumento de la Imagen/métodos , Microburbujas , Ultrasonografía Doppler Transcraneal/métodos , Animales , Medios de Contraste/administración & dosificación , Neuroimagen Funcional/normas , Aumento de la Imagen/normas , Masculino , Ratones , Ratones Endogámicos C57BL , Estimulación Luminosa , Reproducibilidad de los Resultados , Ultrasonografía Doppler Transcraneal/normas
3.
Glia ; 67(2): 345-359, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30506969

RESUMEN

Prematurity and fetal growth restriction (FGR) are frequent conditions associated with adverse neurocognitive outcomes. We have previously identified early deregulation of genes controlling neuroinflammation as a putative mechanism linking FGR and abnormal trajectory of the developing brain. While the oxytocin system was also found to be impaired following adverse perinatal events, its role in the modulation of neuroinflammation in the developing brain is still unknown. We used a double-hit rat model of perinatal brain injury induced by gestational low protein diet (LPD) and potentiated by postnatal injections of subliminal doses of interleukin-1ß (IL1ß) and a zebrafish model of neuroinflammation. Effects of the treatment with carbetocin, a selective, long lasting, and brain diffusible oxytocin receptor agonist, have been assessed using a combination of histological, molecular, and functional tools in vivo and in vitro. In the double-hit model, white matter inflammation, deficient myelination, and behavioral deficits have been observed and the oxytocin system was impaired. Early postnatal supplementation with carbetocin alleviated microglial activation at both transcriptional and cellular levels and provided long-term neuroprotection. The central anti-inflammatory effects of carbetocin have been shown in vivo in rat pups and in a zebrafish model of early-life neuroinflammation and reproduced in vitro on stimulated sorted primary microglial cell cultures from rats subjected to LPD. Carbetocin treatment was associated with beneficial effects on myelination, long-term intrinsic brain connectivity and behavior. Targeting oxytocin signaling in the developing brain may be an effective approach to prevent neuroinflammation - induced brain damage of perinatal origin.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Encéfalo/patología , Microglía/efectos de los fármacos , Receptores de Oxitocina/metabolismo , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/patología , Células Cultivadas , Biología Computacional , Dieta con Restricción de Proteínas/efectos adversos , Modelos Animales de Enfermedad , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interleucina-1beta , Lipopolisacáridos/toxicidad , Oxitócicos/uso terapéutico , Oxitocina/análogos & derivados , Oxitocina/uso terapéutico , Fragmentos de Péptidos , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/fisiopatología , ARN Mensajero/metabolismo , Pez Cebra
4.
Neuroimage ; 185: 851-856, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29649559

RESUMEN

The emergence of functional neuroimaging has dramatically accelerated our understanding of the human mind. The advent of functional Magnetic Resonance Imaging paved the way for the next decades' major discoveries in neuroscience and today remains the "gold standard" for deep brain imaging. Recent improvements in imaging technology have been somewhat limited to incremental innovations of mature techniques instead of breakthroughs. Recently, the use of ultrasonic plane waves transmitted at ultrafast frame rates was shown to highly increase Doppler ultrasound sensitivity to blood flows in small vessels in rodents. By identifying regions of brain activation through neurovascular coupling, Ultrafast Doppler was entering into the world of preclinical neuroimaging. The combination of many advantages, including high spatio-temporal resolution, deep penetration, high sensitivity and portability provided unique information about brain function. Recently, Ultrafast Doppler imaging was found able to non-invasively image the spatial and temporal dynamics of microvascular changes during seizures and interictal periods with an unprecedented resolution at bedside. This review summarizes the technical basis, the added value and the clinical perspectives provided by this new brain imaging modality that could create a breakthrough in the knowledge of brain hemodynamics, brain insult, and neuroprotection.


Asunto(s)
Encéfalo/diagnóstico por imagen , Neuroimagen Funcional/métodos , Ultrasonografía Doppler/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Recién Nacido , Masculino
5.
Glia ; 64(12): 2306-2320, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27687291

RESUMEN

Fetal growth restriction (FGR) is a major complication of human pregnancy, frequently resulting from placental vascular diseases and prenatal malnutrition, and is associated with adverse neurocognitive outcomes throughout life. However, the mechanisms linking poor fetal growth and neurocognitive impairment are unclear. Here, we aimed to correlate changes in gene expression induced by FGR in rats and abnormal cerebral white matter maturation, brain microstructure, and cortical connectivity in vivo. We investigated a model of FGR induced by low-protein-diet malnutrition between embryonic day 0 and birth using an interdisciplinary approach combining advanced brain imaging, in vivo connectivity, microarray analysis of sorted oligodendroglial and microglial cells and histology. We show that myelination and brain function are both significantly altered in our model of FGR. These alterations, detected first in the white matter on magnetic resonance imaging significantly reduced cortical connectivity as assessed by ultrafast ultrasound imaging. Fetal growth retardation was found associated with white matter dysmaturation as shown by the immunohistochemical profiles and microarrays analyses. Strikingly, transcriptomic and gene network analyses reveal not only a myelination deficit in growth-restricted pups, but also the extensive deregulation of genes controlling neuroinflammation and the cell cycle in both oligodendrocytes and microglia. Our findings shed new light on the cellular and gene regulatory mechanisms mediating brain structural and functional defects in malnutrition-induced FGR, and suggest, for the first time, a neuroinflammatory basis for the poor neurocognitive outcome observed in growth-restricted human infants. GLIA 2016;64:2306-2320.


Asunto(s)
Lesiones Encefálicas/etiología , Lesiones Encefálicas/patología , Retardo del Crecimiento Fetal/fisiopatología , Microglía/metabolismo , Oligodendroglía/metabolismo , Transcriptoma/fisiología , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Animales Recién Nacidos , Antígenos/metabolismo , Antígenos CD/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Lesiones Encefálicas/diagnóstico por imagen , Citocinas/metabolismo , Femenino , Expresión Génica/fisiología , Lipopolisacáridos/farmacología , Proteína Básica de Mielina/metabolismo , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/efectos de los fármacos , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Embarazo , Proteoglicanos/metabolismo , Ratas , Ratas Sprague-Dawley
6.
Neuroimage ; 127: 472-483, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26555279

RESUMEN

4D ultrasound microvascular imaging was demonstrated by applying ultrafast Doppler tomography (UFD-T) to the imaging of brain hemodynamics in rodents. In vivo real-time imaging of the rat brain was performed using ultrasonic plane wave transmissions at very high frame rates (18,000 frames per second). Such ultrafast frame rates allow for highly sensitive and wide-field-of-view 2D Doppler imaging of blood vessels far beyond conventional ultrasonography. Voxel anisotropy (100 µm × 100 µm × 500 µm) was corrected for by using a tomographic approach, which consisted of ultrafast acquisitions repeated for different imaging plane orientations over multiple cardiac cycles. UFT-D allows for 4D dynamic microvascular imaging of deep-seated vasculature (up to 20 mm) with a very high 4D resolution (respectively 100 µm × 100 µm × 100 µm and 10 ms) and high sensitivity to flow in small vessels (>1 mm/s) for a whole-brain imaging technique without requiring any contrast agent. 4D ultrasound microvascular imaging in vivo could become a valuable tool for the study of brain hemodynamics, such as cerebral flow autoregulation or vascular remodeling after ischemic stroke recovery, and, more generally, tumor vasculature response to therapeutic treatment.


Asunto(s)
Encéfalo/irrigación sanguínea , Neuroimagen/métodos , Ultrasonografía Doppler/métodos , Animales , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional/métodos , Ratas , Ratas Sprague-Dawley , Tomografía Computarizada por Rayos X
7.
Crit Care Med ; 43(10): e420-30, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26110489

RESUMEN

OBJECTIVES: Total liquid ventilation provides ultrafast and potently neuro- and cardioprotective cooling after shockable cardiac arrest and myocardial infarction in animals. Our goal was to decipher the effect of hypothermic total liquid ventilation on the systemic and cerebral response to asphyxial cardiac arrest using an original pressure- and volume-controlled ventilation strategy in rabbits. DESIGN: Randomized animal study. SETTING: Academic research laboratory. SUBJECTS: New Zealand Rabbits. INTERVENTIONS: Thirty-six rabbits were submitted to 13 minutes of asphyxia, leading to cardiac arrest. After resumption of spontaneous circulation, they underwent either normothermic life support (control group, n = 12) or hypothermia induced by either 30 minutes of total liquid ventilation (total liquid ventilation group, n = 12) or IV cold saline (conventional cooling group, n = 12). MEASUREMENTS AND MAIN RESULTS: Ultrafast cooling with total liquid ventilation (32 °C within 5 min in the esophagus) dramatically attenuated the post-cardiac arrest syndrome regarding survival, neurologic dysfunction, and histologic lesions (brain, heart, kidneys, liver, and lungs). Final survival rate achieved 58% versus 0% and 8% in total liquid ventilation, control, and conventional cooling groups (p < 0.05), respectively. This was accompanied by an early preservation of the blood-brain barrier integrity and cerebral hemodynamics as well as reduction in the immediate reactive oxygen species production in the brain, heart, and kidneys after cardiac arrest. Later on, total liquid ventilation also mitigated the systemic inflammatory response through alteration of monocyte chemoattractant protein-1, interleukin-1ß, and interleukin-8 transcripts levels compared with control. In the conventional cooling group, cooling was achieved more slowly (32 °C within 90-120 min in the esophagus), providing none of the above-mentioned systemic or organ protection. CONCLUSIONS: Ultrafast cooling by total liquid ventilation limits the post-cardiac arrest syndrome after asphyxial cardiac arrest in rabbits. This protection involves an early limitation in reactive oxidative species production, blood-brain barrier disruption, and delayed preservation against the systemic inflammatory response.


Asunto(s)
Encefalopatías/etiología , Encefalopatías/prevención & control , Paro Cardíaco/complicaciones , Hipotermia Inducida , Ventilación Liquida , Animales , Asfixia/complicaciones , Barrera Hematoencefálica , Paro Cardíaco/etiología , Paro Cardíaco/fisiopatología , Hemodinámica , Hipotermia Inducida/métodos , Ventilación Liquida/métodos , Masculino , Conejos , Distribución Aleatoria , Sepsis/fisiopatología
8.
J Cereb Blood Flow Metab ; : 271678X241232197, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38340789

RESUMEN

Preterm birth is associated with cerebrovascular development disruption and can induce white matter injuries (WMI). Transfontanellar ultrasound Doppler is the most widely used clinical imaging technique to monitor neonatal cerebral vascularisation and haemodynamics based on vascular indexes such as the resistivity index (RI); however, it has poor predictive value for brain damage. Indeed, these RI measurements are currently limited to large vessels, leading to a very limited probing of the brain's vascularisation, which may hinder prognosis. Here we show that ultrafast Doppler imaging (UfD) enables simultaneous quantification, in the whole field of view, of the local RI and vessel diameter, even in small vessels. Combining both pieces of information, we defined two new comprehensive resistivity parameters of the vascular trees. First, we showed that our technique is more sensitive in the early characterisation of the RI modifications between term and preterm neonates and for the first time we could show that the RI depends both on the vessel diameter and vascular territory. We then showed that our parameters can be used for early prediction of WMI. Our results demonstrate the potential of UfD to provide new biomarkers and pave the way for continuous monitoring of neonatal brain resistivity.

9.
Sci Rep ; 14(1): 11827, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782968

RESUMEN

Cerebral white matter damage (WMD) is the most frequent brain lesion observed in infants surviving premature birth. Qualitative B-mode cranial ultrasound (cUS) is widely used to assess brain integrity at bedside. Its limitations include lower discriminatory power to predict long-term outcomes compared to magnetic resonance imaging (MRI). Shear wave elastography (SWE), a promising ultrasound imaging modality, might improve this limitation by detecting quantitative differences in tissue stiffness. The study enrolled 90 neonates (52% female, mean gestational age = 30.1 ± 4.5 weeks), including 78 preterm and 12 term controls. Preterm neonates underwent B-mode and SWE assessments in frontal white matter (WM), parietal WM, and thalami on day of life (DOL) 3, DOL8, DOL21, 40 weeks, and MRI at term equivalent age (TEA). Term infants were assessed on DOL3 only. Our data revealed that brain stiffness increased with gestational age in preterm infants but remained lower at TEA compared to the control group. In the frontal WM, elasticity values were lower in preterm infants with WMD detected on B-mode or MRI at TEA and show a good predictive value at DOL3. Thus, brain stiffness measurement using SWE could be a useful screening method for early identification of preterm infants at high WMD risk.Registration numbers: EudraCT number ID-RCB: 2012-A01530-43, ClinicalTrial.gov number NCT02042716.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Recien Nacido Prematuro , Sustancia Blanca , Humanos , Diagnóstico por Imagen de Elasticidad/métodos , Femenino , Recién Nacido , Masculino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Edad Gestacional
10.
Sci Rep ; 13(1): 11477, 2023 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-37455266

RESUMEN

In the last decade, Ultrafast ultrasound localisation microscopy has taken non-invasive deep vascular imaging down to the microscopic level. By imaging diluted suspensions of circulating microbubbles in the blood stream at kHz frame rate and localizing the center of their individual point spread function with a sub-resolution precision, it enabled to break the unvanquished trade-off between depth of imaging and resolution by microscopically mapping the microbubbles flux and velocities deep into tissue. However, ULM also suffers limitations. Many small vessels are not visible in the ULM images due to the noise level in areas dimly explored by the microbubbles. Moreover, as the vast majority of studies are performed using 2D imaging, quantification is limited to in-plane velocity or flux measurements which hinders the accurate velocity determination and quantification. Here we show that the backscattering amplitude of each individual microbubble can also be exploited to produce backscattering images of the vascularization with a higher sensitivity compared to conventional ULM images. By providing valuable information about the relative distance of the microbubble to the 2D imaging plane in the out-of-plane direction, backscattering ULM images introduces a physically relevant 3D rendering perception in the vascular maps. It also retrieves the missing information about the out-of-plane motion of microbubbles and provides a way to improve 3D flow and velocity quantification using 2D ULM. These results pave the way to improved visualization and quantification for 2D and 3D ULM.


Asunto(s)
Fenómenos Biológicos , Microscopía , Microscopía/métodos , Microburbujas , Fantasmas de Imagen , Ultrasonografía/métodos , Medios de Contraste
11.
Phys Med Biol ; 68(2)2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36595330

RESUMEN

Objective. Imaging the human brain vasculature with high spatial and temporal resolution remains challenging in the clinic today. Transcranial ultrasound is still scarcely used for cerebrovascular imaging, due to low sensitivity and strong phase aberrations induced by the skull bone that only enable the proximal part major brain vessel imaging, even with ultrasound contrast agent injection (microbubbles).Approach. Here, we propose an adaptive aberration correction technique for skull bone aberrations based on the backscattered signals coming from intravenously injected microbubbles. Our aberration correction technique was implemented to image brain vasculature in human adults through temporal and occipital bone windows. For each subject, an effective speed of sound, as well as a phase aberration profile, were determined in several isoplanatic patches spread across the image. This information was then used in the beamforming process.Main results. This aberration correction method reduced the number of artefacts, such as ghost vessels, in the images. It improved image quality both for ultrafast Doppler imaging and ultrasound localization microscopy (ULM), especially in patients with thick bone windows. For ultrafast Doppler images, the contrast was increased by 4 dB on average, and for ULM, the number of detected microbubble tracks was increased by 38%.Significance. This technique is thus promising for better diagnosis and follow-up of brain pathologies such as aneurysms, arterial stenoses, arterial occlusions, microvascular disease and stroke and could make transcranial ultrasound imaging possible even in particularly difficult-to-image human adults.


Asunto(s)
Encéfalo , Cráneo , Adulto , Humanos , Ultrasonografía/métodos , Encéfalo/irrigación sanguínea , Cráneo/diagnóstico por imagen , Sonido , Medios de Contraste , Microburbujas
12.
Nat Nanotechnol ; 18(6): 667-676, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37012508

RESUMEN

Remote and precisely controlled activation of the brain is a fundamental challenge in the development of brain-machine interfaces for neurological treatments. Low-frequency ultrasound stimulation can be used to modulate neuronal activity deep in the brain, especially after expressing ultrasound-sensitive proteins. But so far, no study has described an ultrasound-mediated activation strategy whose spatiotemporal resolution and acoustic intensity are compatible with the mandatory needs of brain-machine interfaces, particularly for visual restoration. Here we combined the expression of large-conductance mechanosensitive ion channels with uncustomary high-frequency ultrasonic stimulation to activate retinal or cortical neurons over millisecond durations at a spatiotemporal resolution and acoustic energy deposit compatible with vision restoration. The in vivo sonogenetic activation of the visual cortex generated a behaviour associated with light perception. Our findings demonstrate that sonogenetics can deliver millisecond pattern presentations via an approach less invasive than current brain-machine interfaces for visual restoration.


Asunto(s)
Expresión Génica Ectópica , Corteza Visual , Neuronas/metabolismo , Retina , Visión Ocular
13.
JACC Cardiovasc Imaging ; 15(7): 1193-1208, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798395

RESUMEN

BACKGROUND: Direct assessment of the coronary microcirculation has long been hampered by the limited spatial and temporal resolutions of cardiac imaging modalities. OBJECTIVES: The purpose of this study was to demonstrate 3-dimensional (3D) coronary ultrasound localization microscopy (CorULM) of the whole heart beyond the acoustic diffraction limit (<20 µm resolution) at ultrafast frame rate (>1000 images/s). METHODS: CorULM was performed in isolated beating rat hearts (N = 6) with ultrasound contrast agents (Sonovue, Bracco), using an ultrasonic matrix transducer connected to a high channel-count ultrafast electronics. We assessed the 3D coronary microvascular anatomy, flow velocity, and flow rate of beating hearts under normal conditions, during vasodilator adenosine infusion, and during coronary occlusion. The coronary vasculature was compared with micro-computed tomography performed on the fixed heart. In vivo transthoracic CorULM was eventually assessed on anaesthetized rats (N = 3). RESULTS: CorULM enables the 3D visualization of the coronary vasculature in beating hearts at a scale down to microvascular structures (<20 µm resolution). Absolute flow velocity estimates range from 10 mm/s in tiny arterioles up to more than 300 mm/s in large arteries. Fitting to a power law, the flow rate-radius relationship provides an exponent of 2.61 (r2 = 0.96; P < 0.001), which is consistent with theoretical predictions and experimental validations of scaling laws in vascular trees. A 2-fold increase of the microvascular coronary flow rate is found in response to adenosine, which is in good agreement with the overall perfusion flow rate measured in the aorta (control measurement) that increased from 8.80 ± 1.03 mL/min to 16.54 ± 2.35 mL/min (P < 0.001). The feasibility of CorULM was demonstrated in vivo for N = 3 rats. CONCLUSIONS: CorULM provides unprecedented insights into the anatomy and function of coronary arteries at the microvasculature level in beating hearts. This new technology is highly translational and has the potential to become a major tool for the clinical investigation of the coronary microcirculation.


Asunto(s)
Vasos Coronarios , Microscopía , Adenosina , Animales , Circulación Coronaria , Vasos Coronarios/diagnóstico por imagen , Microscopía/métodos , Valor Predictivo de las Pruebas , Ratas , Microtomografía por Rayos X
14.
Commun Biol ; 5(1): 137, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177769

RESUMEN

How mechanical stress actively impacts the physiology and pathophysiology of cells and tissues is little investigated in vivo. The colon is constantly submitted to multi-frequency spontaneous pulsatile mechanical waves, which highest frequency functions, of 2 s period, remain poorly understood. Here we find in vivo that high frequency pulsatile mechanical stresses maintain the physiological level of mice colon stem cells (SC) through the mechanosensitive Ret kinase. When permanently stimulated by a magnetic mimicking-tumor growth analogue pressure, we find that SC levels pathologically increase and undergo mechanically induced hyperproliferation and tumorigenic transformation. To mimic the high frequency pulsatile mechanical waves, we used a generator of pulsed magnetic force stimulation in colonic tissues pre-magnetized with ultra-magnetic liposomes. We observed the pulsatile stresses using last generation ultra-wave dynamical high-resolution imaging. Finally, we find that the specific pharmacological inhibition of Ret mechanical activation induces the regression of spontaneous formation of SC, of CSC markers, and of spontaneous sporadic tumorigenesis in Apc mutated mice colons. Consistently, in human colon cancer tissues, Ret activation in epithelial cells increases with tumor grade, and partially decreases in leaking invasive carcinoma. High frequency pulsatile physiological mechanical stresses thus constitute a new niche that Ret-dependently fuels mice colon physiological SC level. This process is pathologically over-activated in the presence of permanent pressure due to the growth of tumors initiated by pre-existing genetic alteration, leading to mechanotransductive self-enhanced tumor progression in vivo, and repressed by pharmacological inhibition of Ret.


Asunto(s)
Neoplasias del Colon/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Animales , Biomarcadores de Tumor , Línea Celular Tumoral , Transformación Celular Neoplásica , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos , Células Madre Neoplásicas , Proteínas Proto-Oncogénicas c-ret/genética
15.
Neuroscience ; 474: 110-121, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33727073

RESUMEN

Ultrasound sensitivity to slow blood flow motion gained two orders of magnitude in the last decade thanks to the advent of ultrafast ultrasound imaging at thousands of frames per second. In neuroscience, this access to small cerebral vessels flow led to the introduction of ultrasound as a new and full-fledged neuroimaging modality. Much as functional MRI or functional optical imaging, functional Ultrasound (fUS) takes benefit of the neurovascular coupling. Its ease of use, portability, spatial and temporal resolution makes it an attractive tool for functional imaging of brain activity in preclinical imaging. A large and fast-growing number of studies in a wide variety of small to large animal models have demonstrated its potential for neuroscience research. Beyond preclinical imaging, first proof of concept applications in humans are promising and proved a clear clinical interest in particular in human neonates, per-operative surgery, or even for the development of non-invasive brain machine interfaces.


Asunto(s)
Neurociencias , Acoplamiento Neurovascular , Animales , Encéfalo/diagnóstico por imagen , Humanos , Neuroimagen , Ultrasonografía
16.
Elife ; 102021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34792467

RESUMEN

Little is known about how neural representations of natural sounds differ across species. For example, speech and music play a unique role in human hearing, yet it is unclear how auditory representations of speech and music differ between humans and other animals. Using functional ultrasound imaging, we measured responses in ferrets to a set of natural and spectrotemporally matched synthetic sounds previously tested in humans. Ferrets showed similar lower-level frequency and modulation tuning to that observed in humans. But while humans showed substantially larger responses to natural vs. synthetic speech and music in non-primary regions, ferret responses to natural and synthetic sounds were closely matched throughout primary and non-primary auditory cortex, even when tested with ferret vocalizations. This finding reveals that auditory representations in humans and ferrets diverge sharply at late stages of cortical processing, potentially driven by higher-order processing demands in speech and music.


Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Hurones/fisiología , Sonido , Estimulación Acústica , Animales , Humanos
17.
Nat Biomed Eng ; 5(3): 219-228, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33723412

RESUMEN

Changes in cerebral blood flow are associated with stroke, aneurysms, vascular cognitive impairment, neurodegenerative diseases and other pathologies. Brain angiograms, typically performed via computed tomography or magnetic resonance imaging, are limited to millimetre-scale resolution and are insensitive to blood-flow dynamics. Here we show that ultrafast ultrasound localization microscopy of intravenously injected microbubbles enables transcranial imaging of deep vasculature in the adult human brain at microscopic resolution and the quantification of haemodynamic parameters. Adaptive speckle tracking to correct for micrometric brain-motion artefacts and ultrasonic-wave aberrations induced during transcranial propagation allowed us to map the vascular network of tangled arteries to functionally characterize blood-flow dynamics at a resolution of up to 25 µm and to detect blood vortices in a small deep-seated aneurysm in a patient. Ultrafast ultrasound localization microscopy may facilitate the understanding of brain haemodynamics and of how vascular abnormalities in the brain are related to neurological pathologies.


Asunto(s)
Arterias/patología , Encéfalo/patología , Circulación Cerebrovascular/fisiología , Microscopía/métodos , Ultrasonografía/métodos , Humanos , Microburbujas , Movimiento (Física)
18.
Neuron ; 109(9): 1554-1566.e4, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33756104

RESUMEN

New technologies are key to understanding the dynamic activity of neural circuits and systems in the brain. Here, we show that a minimally invasive approach based on ultrasound can be used to detect the neural correlates of movement planning, including directions and effectors. While non-human primates (NHPs) performed memory-guided movements, we used functional ultrasound (fUS) neuroimaging to record changes in cerebral blood volume with 100 µm resolution. We recorded from outside the dura above the posterior parietal cortex, a brain area important for spatial perception, multisensory integration, and movement planning. We then used fUS signals from the delay period before movement to decode the animals' intended direction and effector. Single-trial decoding is a prerequisite to brain-machine interfaces, a key application that could benefit from this technology. These results are a critical step in the development of neuro-recording and brain interface tools that are less invasive, high resolution, and scalable.


Asunto(s)
Intención , Neuroimagen/métodos , Lóbulo Parietal/fisiología , Desempeño Psicomotor/fisiología , Ultrasonografía/métodos , Animales , Mapeo Encefálico/métodos , Interfaces Cerebro-Computador , Macaca mulatta , Masculino , Movimiento , Neuroimagen/instrumentación , Ultrasonografía/instrumentación
19.
Nat Commun ; 12(1): 1080, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597538

RESUMEN

Clinicians have long been interested in functional brain monitoring, as reversible functional losses often precedes observable irreversible structural insults. By characterizing neonatal functional cerebral networks, resting-state functional connectivity is envisioned to provide early markers of cognitive impairments. Here we present a pioneering bedside deep brain resting-state functional connectivity imaging at 250-µm resolution on human neonates using functional ultrasound. Signal correlations between cerebral regions unveil interhemispheric connectivity in very preterm newborns. Furthermore, fine-grain correlations between homologous pixels are consistent with white/grey matter organization. Finally, dynamic resting-state connectivity reveals a significant occurrence decrease of thalamo-cortical networks for very preterm neonates as compared to control term newborns. The same method also shows abnormal patterns in a congenital seizure disorder case compared with the control group. These results pave the way to infants' brain continuous monitoring and may enable the identification of abnormal brain development at the bedside.


Asunto(s)
Encéfalo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Epilepsia/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Algoritmos , Encéfalo/fisiopatología , Corteza Cerebral/fisiopatología , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Femenino , Sustancia Gris/fisiopatología , Humanos , Recién Nacido , Recien Nacido Prematuro , Imagen por Resonancia Magnética/métodos , Masculino , Modelos Neurológicos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Ultrasonografía Doppler/métodos , Sustancia Blanca/fisiopatología
20.
Nat Commun ; 11(1): 6193, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273463

RESUMEN

During locomotion, theta and gamma rhythms are essential to ensure timely communication between brain structures. However, their metabolic cost and contribution to neuroimaging signals remain elusive. To finely characterize neurovascular interactions during locomotion, we simultaneously recorded mesoscale brain hemodynamics using functional ultrasound (fUS) and local field potentials (LFP) in numerous brain structures of freely-running overtrained rats. Locomotion events were reliably followed by a surge in blood flow in a sequence involving the retrosplenial cortex, dorsal thalamus, dentate gyrus and CA regions successively, with delays ranging from 0.8 to 1.6 seconds after peak speed. Conversely, primary motor cortex was suppressed and subsequently recruited during reward uptake. Surprisingly, brain hemodynamics were strongly modulated across trials within the same recording session; cortical blood flow sharply decreased after 10-20 runs, while hippocampal responses strongly and linearly increased, particularly in the CA regions. This effect occurred while running speed and theta activity remained constant and was accompanied by an increase in the power of hippocampal, but not cortical, high-frequency oscillations (100-150 Hz). Our findings reveal distinct vascular subnetworks modulated across fast and slow timescales and suggest strong hemodynamic adaptation, despite the repetition of a stereotyped behavior.


Asunto(s)
Adaptación Fisiológica , Encéfalo/fisiología , Hemodinámica/fisiología , Carrera/fisiología , Conducta Estereotipada/fisiología , Potenciales de Acción/fisiología , Animales , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Volumen Sanguíneo Cerebral/fisiología , Ritmo Gamma/fisiología , Locomoción , Ratas Sprague-Dawley , Ritmo Teta/fisiología , Factores de Tiempo , Grabación en Video
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda