Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Chemistry ; 30(14): e202303267, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38168472

RESUMEN

Developing new electrode materials with good temperature-dependent electrochemical performance has become a great issue for the deployment of hybrid supercapacitors with wide temperature tolerance. In this work, a series of Ta-substituted SrCo1-x Tax O3-δ (x=0.05, 0.10, 0.15, 0.20) perovskites have been studied as positive electrodes for hybrid supercapacitors in terms of their structures, elemental valence states and electrochemical performances. Incorporating Ta into SrCoO3-δ perovskite not only stabilizes the crystallite structure but also notably improves electrochemical activities. The SrCo0.95 Ta0.05 O3-δ @CC delivers the highest specific capacity (Qsp ) of 227.91 C g-1 at 1 A g-1 , which is attributed to the highest oxygen vacancy content and the fastest oxygen diffusion kinetics. The hybrid supercapacitor SrCo0.95 Ta0.05 O3-δ @CC//AC@CC exhibits a high energy density of 22.82 Wh kg-1 @775.09 W kg-1 and a stable long-term cycle life (5000 cycles) with 90.7 % capacity retention. As temperature increases from 25 to 85 °C, the capacitance properties are improved at elevated temperatures for both electrode and device due to the increased electrolyte conductivity. The outstanding electrochemical results present that SrCo1-x Tax O3-δ perovskite holds good prospects for hybrid supercapacitors with wide temperature tolerance.

2.
Chem Rec ; 24(4): e202300234, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38530060

RESUMEN

Silica-derived nanostructured catalysts (SDNCs) are a class of materials synthesized using nanocasting and templating techniques, which involve the sacrificial removal of a silica template to generate highly porous nanostructured materials. The surface of these nanostructures is functionalized with a variety of electrocatalytically active metal and non-metal atoms. SDNCs have attracted considerable attention due to their unique physicochemical properties, tunable electronic configuration, and microstructure. These properties make them highly efficient catalysts and promising electrode materials for next generation electrocatalysis, energy conversion, and energy storage technologies. The continued development of SDNCs is likely to lead to new and improved electrocatalysts and electrode materials. This review article provides a comprehensive overview of the recent advances in the development of SDNCs for electrocatalysis and energy storage applications. It analyzes 337,061 research articles published in the Web of Science (WoS) database up to December 2022 using the keywords "silica", "electrocatalysts", "ORR", "OER", "HER", "HOR", "CO2RR", "batteries", and "supercapacitors". The review discusses the application of SDNCs for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), supercapacitors, lithium-ion batteries, and thermal energy storage applications. It concludes by discussing the advantages and limitations of SDNCs for energy applications.

3.
Inorg Chem ; 63(29): 13755-13765, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38982641

RESUMEN

Developing high-performance electrodes for flexible antifreezing energy storage devices has been a significant challenge with the increasing demand for portable components. In this work, Cr-substituted SrCoO3-δ perovskites were first proposed as potential low-temperature supercapacitor electrode materials. The high-valence Cr6+ ([Ne]3s23p6) substitution favors a high-spin state of Co ions with enhanced electronic repulsion effect, ultimately forming a stable cubic structure with high conductivity. Accordingly, the modification strategies of SrCoO3 through the p6 configuration cation substitution have been improved. As a result, the asymmetric SrCo0.95Cr0.05O3-δ@CC//PPy@CC device exhibited a high energy density of 44.90 Wh kg-1 at 902.01 W kg-1 and maintained a 95.8% specific capacitance after 10,000 cycles, demonstrating an ultralong cyclic stability. The dramatically improved electrochemical performance was attributed to the stabilized crystal structure, increased oxygen vacancy, and accelerated oxygen diffusion rate. Furthermore, a quasi-solid-state supercapacitor with ethylene glycol (EG)-modified KOH/PVA organohydrogel electrolyte was developed through an advance in situ-integrated strategy. After bending at 180° for 1000 cycles, only a 9.7% capacity decay was observed. Even under -40 °C, the supercapacitor has a large energy density of 46.94 µWh cm-2. The present work represents the initial investigation into utilizing perovskite materials for antifreezing energy storage device, thereby confirming their potential application as low-temperature electronic components.

4.
Int J Phytoremediation ; 25(10): 1306-1317, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36437748

RESUMEN

Remediation of organic dyes from wastewater in textile industries is a big challenge to decreasing water pollution. This study was aimed at the preparation of ZnO nanoparticles (NPs) and their application as a photocatalyst for the degradation of methylene blue (MB), sunfix red (SR) and real textile wastewater (RTW) under both UV and visible irradiations. The ZnO NPs were synthesized with a green Thymus vulgaris leaf extract-supported approach following the calcination process. 50 mg L-1 MB and 50 mg L-1 SR dyes were completely photodegrade under UV irradiation after only 20 and 45 minutes, respectively, in the presence of 1.0 mg/mL ZnO NPs. When they are exposed to visible light, the degradation efficiency reached 91 and 75% within 60 and 120 min, respectively. Photocatalytic measurements of RTW depict that 95% (within 60 min under UV illumination) and 79% (within 90 min under visible illumination) were degraded, respectively. The enhanced photodegradation can be attributed to the narrowing of the bandgap of the ZnO NPs, high crystallinity and nearly hexagonal morphology with an average size of 20-30 nm. The present results show that ZnO NPs could potentially be applied for high-efficiency degradation of organic dyes and RTW under both UV and visible light irradiation.


We report for the first time, Thymus vulgaris leaf extract­assisted synthesis of ZnO nanoparticles (NPs) has been applied as a photocatalytic dye and RTW degradation. Second, our synthesis approach is more facile and simple than the previous method where complex hydrothermal or solvothermal methods have been applied, which leads to a complex preparation procedure. We systematically prepared ZnO materials in taking account into the variable Thymus vulgaris/ZnO precursor ratio, different calcination temperature and time and in detail, their photocatalytic activity has been fully investigated.


Asunto(s)
Óxido de Zinc , Aguas Residuales , Catálisis , Biodegradación Ambiental , Colorantes , Azul de Metileno , Textiles
5.
Molecules ; 28(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36838757

RESUMEN

The design and synthesis of porous carbons for CO2 adsorption have attracted tremendous interest owing to the ever-soaring concerns regarding climate change and global warming. Herein, for the first time, nitrogen-rich porous carbon was prepared with chemical activation (KOH) of commercial melamine formaldehyde resin (MF) in a single step. It has been shown that the porosity parameters of the as-prepared carbons were successfully tuned by controlling the activating temperature and adjusting the amount of KOH. Thus, as-prepared N-rich porous carbon shows a large surface area of 1658 m2/g and a high N content of 16.07 wt%. Benefiting from the unique physical and textural features, the optimal sample depicted a CO2 uptake of up to 4.95 and 3.30 mmol/g at 0 and 25 °C under 1 bar of pressure. More importantly, as-prepared adsorbents show great CO2 selectivity over N2 and outstanding recyclability, which was prominently important for CO2 capture from the flue gases in practical application. An in-depth analysis illustrated that the synergetic effect of textural properties and surface nitrogen decoration mainly determined the CO2 capture performance. However, the textural properties of carbons play a more important role than surface functionalities in deciding CO2 uptake. In view of cost-effective synthesis, outstanding textural activity, and the high adsorption capacity together with good selectivity, this advanced approach becomes valid and convenient in fabricating a unique highly efficient N-rich carbon adsorbent for CO2 uptake and separation from flue gases.


Asunto(s)
Dióxido de Carbono , Carbono , Carbono/química , Dióxido de Carbono/química , Porosidad , Nitrógeno/química , Polímeros
6.
Molecules ; 27(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36296408

RESUMEN

N-enriched porous carbons have played an important part in CO2 adsorption application thanks to their abundant porosity, high stability and tailorable surface properties while still suffering from a non-efficient and high-cost synthesis method. Herein, a series of N-doped porous carbons were prepared by a facile one-pot KOH activating strategy from commercial urea formaldehyde resin (UF). The textural properties and nitrogen content of the N-doped carbons were carefully controlled by the activating temperature and KOH/UF mass ratios. As-prepared N-doped carbons show 3D block-shaped morphology, the BET surface area of up to 980 m2/g together with a pore volume of 0.52 cm3/g and N content of 23.51 wt%. The optimal adsorbent (UFK-600-0.2) presents a high CO2 uptake capacity of 4.03 mmol/g at 0 °C and 1 bar. Moreover, as-prepared N-doped carbon adsorbents show moderate isosteric heat of adsorption (43-53 kJ/mol), acceptable ideal adsorption solution theory (IAST) selectivity of 35 and outstanding recycling performance. It has been pointed out that while the CO2 uptake was mostly dependent on the textural feature, the N content of carbon also plays a critical role to define the CO2 adsorption performance. The present study delivers favorable N-doped carbon for CO2 uptake and provides a promising strategy for the design and synthesis of the carbon adsorbents.

7.
Sci Rep ; 13(1): 1364, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36693890

RESUMEN

The design of bimetallic tellurides that exhibit excellent electrochemical properties remains a huge challenge for high-performance supercapacitors. In the present study, tellurium is consolidated on CoNi2@rGO for the first time, to synthesize NiTe2-Co2Te2@rGO nanocomposite by using a facile hydrothermal method. As-prepared NiTe2-Co2Te2@rGO nanocomposite was characterized by EDS, TEM, FESEM, Raman, BET, XRD, and XPS techniques to prove the structural transformation. Upon the electrochemical characterization, NiTe2-Co2Te2@rGO has notably presented numerous active sites and enhanced contact sites with the electrolyte solution during the faradic reaction. The as-prepared nanocomposite reveals a specific capacity of 223.6 mAh g-1 in 1.0 M KOH at 1.0 A g-1. Besides, it could retain 89.3% stability after 3000 consecutive galvanostatic charge-discharge cycles at 1.0 A g-1 current density. The hybrid supercapacitor, fabricated by activated carbon as an anode site, and NiTe2-Co2Te2@rGO as a cathode site, presents a potential window of 1.60 V with an energy density of 51 Wh kg-1 and a power density of 800 W kg-1; this electrode is capable of lighting up two red LED lamps and a yellow LED lamp for 20 min, which is connected in parallel. The present work opens new avenues to design and fabrication of nanocomposite electrode materials in the field of supercapacitors.

8.
J Colloid Interface Sci ; 645: 297-305, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37150003

RESUMEN

Supercapacitors are attracting extensive attention in energy storage fields thanks to their high safety, cost-effectiveness, and environmental friendliness. The carbon materials, especially for the porous carbon materials derived from renewable biomass materials, are important electrode materials with cost-effective feature for supercapacitors. However, the inferior ionic conductivity of biomass materials inhibits their electrochemical performance in energy storage devices. Herein, an immiscible liquid-mediated method is provided to improve the ionic conductivity of silk-derived nitrogen-doped porous carbon (NPC) electrodes. Natural Bombyx mori (silkworm) silk is used as a carbon source for the preparation of electrode of supercapacitor. Further introducing immiscible organic liquid into the NPCs promotes the ion transport in the inner pores of the electrodes. With the assistance of organic liquid, the supercapacitor presents a specific capacitance of 565.3 F g-1 at a current density of 1 A g-1. The supercapacitor shows the maximum specific energy and power density of 26.2 Wh kg-1 and 263.9 W kg-1, and holds a capacitance retention of approximately 93.3% after 10 000 cycles. This work provides a facile method for the rational design of carbon material derived from biomass material to fabricate electrode with high ionic conductivity, and the strategy will be extendable to other biomass materials for a wide range of applications.

9.
Sci Rep ; 13(1): 19350, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935797

RESUMEN

Traditionally, cellulose nanofiber (CNF) production has primarily relied on virgin cellulose sources. Yet, the shift to using paper mill sludge (PMS) as a source for CNF underscores the significance of reusing and recycling industrial byproducts. PMS contains significant amounts of cellulose that can be extracted as a raw material. The purpose of present study is to provide a sustainable approach to PMS utilization as a paper coating additive in the cellulose nanofibrils (CNFPMS) form via simply scalable wire-wound rod coating method. The effect of CNFPMS additive amounts at two coating layers on microstructure and surface properties of coatings such as porosity, air permeability surface roughness and optical properties such as brightness, gloss and CIE L*a*b* is studied, which they can also provide insight for the eventual print performance. Results indicated that the obtained CNFPMS in paper coating shows 52% decrease in porosity, presenting significant improvement in the coating microstructure. The marginal increase in permeability coefficient and surface roughness, 54% and 10%, respectively, suggests improving color reproduction and preventing color density losses. Optical analysis showed slight decrease in brightness and gloss, as was expected. Notably, the lightness was improved, which also indicates increasing color gamut volume in printing applications. As a result, the current work offers a sustainable approach to manage PMS for use in paper coatings as a high-value-added material.

10.
J Colloid Interface Sci ; 633: 723-736, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36508396

RESUMEN

The research on the structure of advanced electrode materials is significant in the field of supercapacitors. Herein, for the first time, we propose a novel 3D/3D composite structure by a multi-step process, in which 3D hollow NiCo LDH nanocages are immobilized on 3D sea urchin-like CoO microspheres. Results show that the 3D CoO acts as an efficient and stable channel for ion diffusion, while the hollow NiCo LDH provides abundant redox-active sites. The calculated results based on density function theory (DFT) show that the CoO@NiCo LDH heterostructure has an enhanced density of states (DOS) near the Fermi level and strong adsorption capacity for OH-, indicating its excellent electrical conductivity and electrochemical reaction kinetics. As a result, the CoO@NiCo LDH electrode has an areal specific capacity of 4.71C cm-2 at a current density of 3 mA cm-2 (440.19C g-1 at 0.28 A g-1) and can still maintain 88.76 % of the initial capacitance after 5000 cycles. In addition, the assembled hybrid supercapacitor has an energy density of 5.59 mWh cm-3 at 39.54 mW cm-3.

11.
Artículo en Inglés | MEDLINE | ID: mdl-37933868

RESUMEN

The defective structure and high oxygen vacancy concentration of SrFeO3-δ perovskite enable fast ion-electron transport, but its low conductivity still hinders the high electrochemical performance. Herein, to enhance the conductivity of SrFeO3-δ-based electrodes, polypyrrole-modified SrFeO3-δ perovskite on carbon cloth (PPy@SFO@CC) has been successfully fabricated by electrodeposition of polypyrrole (PPy) on the surface of SFO@CC. The optimal PPy700@SFO@CC electrode exhibits a specific capacitance of 421 F g-1 at 1 A g-1. It was found that the outside PPy layer not only accelerates the electron transport and ion diffusion but also creates more oxygen vacancies in SrFeO3-δ, enhancing the charge storage performance significantly. Moreover, the NiCo2O4@CC//PPy700@SFO@CC device maintains a specific capacitance of 63.6% after 3000 cycles, which is ascribed to the weak adhesion forces between the active materials and carbon cloth. Finally, the all-solid-state flexible supercapacitor NiCo2O4@CC//PPy700@SFO@CC is constructed with PVA-KOH as the solid electrolyte, delivering an energy density of 16.9 W h kg-1 at a power density of 984 W kg-1. The flexible supercapacitor retains 69% of its specific capacitance after 1000 bending and folding times, demonstrating a certain degree of foldability. The present study opens new avenues for perovskite oxide-based flexible all-solid-state supercapacitors.

12.
RSC Adv ; 8(22): 12300-12309, 2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35539403

RESUMEN

The ever-increasing global energy consumption necessitates the development of efficient energy conversion and storage devices. Nitrogen-doped porous carbons as electrode materials for supercapacitors feature superior electrochemical performances compared to pristine activated carbons. Herein, a facile synthetic strategy including solid-state mixing of benzimidazole as an inexpensive single-source precursor of nitrogen and carbon and zinc chloride as a high temperature solvent/activator followed by pyrolysis of the mixture (T = 700-1000 °C under Ar) is introduced. The addition of ZnCl2 prevents early sublimation of benzimidazole and promotes carbonization and pore generation. The sample obtained under the optimal carbonization temperature of 900 °C and ZnCl2/benzimidazole weight ratio of 2/1 (ZBIDC-2-900) features a moderate specific surface area of 855 m2 g-1, high N-doping level (10 wt%), and a wide micropore size distribution (∼1 nm). ZBIDC-2-900 as a supercapacitor electrode exhibits a large gravimetric capacitance of 332 F g-1 (at 1 A g-1 in 1 M H2SO4) thanks to the cooperative advantages of the electrochemical activity of the nitrogen functional groups and the accessible porosity. The excellent capacitance performance coupled with robust cyclic stability, high yield and straightforward synthesis of the proposed carbons holds great potential for large-scale energy storage applications.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda