RESUMEN
Immune checkpoint inhibitor (ICI) therapy, which targets programmed cell death protein 1, has demonstrated enhanced survival outcomes in numerous patients with cancer. Historically, individuals with autoimmune diseases have been excluded from clinical trials involving cancer immunotherapies due to concerns about the potential worsening of their underlying autoimmune conditions. In the present case report, a patient with non-small cell lung cancer and bullous pemphigoid (BP) who underwent treatment with the ICI pembrolizumab is described. In this specific clinical case, no severe exacerbation of the underlying autoimmune disease was observed. Contrarily, the patient not only tolerated pembrolizumab well but also experienced amelioration of the BP lesions after the treatment. This case challenges the conventional exclusion criteria for ICI therapy in patients with autoimmune diseases, suggesting the potential safety and efficacy of such treatments in this specific population. However, further investigations and larger-scale studies are warranted to validate these findings and provide a more comprehensive understanding of the implications of ICI therapy in patients with autoimmune comorbidities.
RESUMEN
BACKGROUND: Radioresistance is the main reason for the failure of radiotherapy in non-small-cell lung cancer (NSCLC); however, the molecular mechanism of radioresistance is still unclear. METHODS: An RNA-Seq assay was used to screen differentially expressed long non-coding RNAs (lncRNAs) and genes in irradiation-resistant NSCLC cells. RT-PCR and Western blotting assays were performed to analyze the expressions of lncRNAs and genes. The chromosome conformation capture (3C) assay was performed to measure chromatin interactions. Cell cytotoxicity, cell apoptosis, sphere formation and Transwell assays were performed to assess cellular function. RESULTS: In this study, it was found that LINC01224 increased during the induction of radioresistance in NSCLC cells. LINC01224 was located within the enhancer of ZNF91, and LINC01224 could affect the transcription of ZNF91 by regulating the long-range interactions between the ZNF91 enhancer and promoter. Moreover, upregulation of LINC01224 and ZNF91 could promote irradiation resistance by regulating the stem cell-like properties of NSCLC cells. In addition, high expression levels of LINC01224 and ZNF91 in tissue samples were associated with radioresistance in NSCLC patients. CONCLUSION: Our findings demonstrated that LINC01224/ZNF91 drove radioresistance regulation by promoting the stem cell-like properties in NSCLC.
RESUMEN
The underlying molecular mechanisms of cisplatin resistance in nonsmall cell lung cancer (NSCLC) are unclear. In this study, a novel differential methylation region located in the upstream regulatory region of the forkhead box F1 (FOXF1) gene was identified. The abnormal hypomethylation of FOXF1 increased the expression of FOXF1, and the high expression of FOXF1 promoted cell proliferation and inhibited cell apoptosis induced by cisplatin, which resulted in cisplatin resistance in NSCLC cells. In addition, FOXF1 promoted the expression of stem cell markers and selfrenewal capability, indicating that FOXF1 regulated cisplatin resistance by promoting cancer stem cell properties in NSCLC cells. Moreover, a strong association was observed between FOXF1 upregulation and the presence of platinumbased chemotherapy resistance in patients with NSCLC. On the whole, the findings of this study indicate the regulatory mechanisms of cisplatin resistance by FOXF1 in NSCLC, and suggest that FOXF1 may be used as a prognostic biomarker of platinumbased chemotherapy resistance in NSCLC.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Cisplatino/farmacología , Resistencia a Antineoplásicos , Factores de Transcripción Forkhead/genética , Neoplasias Pulmonares/patología , Células Madre Neoplásicas/metabolismo , Regulación hacia Arriba , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Metilación de ADN , Epigénesis Genética , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Trasplante de Neoplasias , Células Madre Neoplásicas/patologíaRESUMEN
BACKGROUND: HGF/MET has been found to be associated with non-small cell lung cancer (NSCLC). However, the underlying molecular mechanisms of HGF/MET involved in regulating the metastasis of NSCLC remain unclear. METHODS: The effect of HGF/MET and FOSL2 on cell migration and invasion were assessed by transwell and scratch assays. HGF/MET-induced phosphorylation and upregulation of FOSL2 was analyzed by RT-PCR and Western blotting. Regulatory effects of FOSL2 on SNAI2 transcription were detected by chromatin immunoprecipitation (ChIP) and dual-Luciferase reporter assays. The correlations of FOSL2 expression with clinical outcomes were assessed in 56 NSCLC patients. RESULTS: HGF/MET induced the phosphorylation and upregulation of FOSL2 by ERK1/2 kinase, FOSL2 promoted the transcription of SNAI2 by binding with the SNAI2 promoter, and SNAI2 subsequently promoted the epithelial-mesenchymal transition (EMT), invasion, and migration of NSCLC cells. According to the clinical correlation analysis in NSCLC, high expression of FOSL2 correlated with advanced tumor stage and metastasis. CONCLUSION: Our studies propose that the regulatory mechanisms of the HGF/MET-induced cascade pathway is mediated by FOSL2 in NSCLC metastasis and suggested that FOSL2 could potentially be employed as a prognostic biomarker and potential therapeutic target of NSCLC metastasis.
RESUMEN
Hepatocyte growth factor (HGF) expression is repressed in normal differentiated lung epithelial cells, but its expression is aberrantly upregulated in non-small cell lung cancer (NSCLC) and acts as a poor prognostic factor. The underlying molecular mechanisms of aberrant HGF expression are unclear. In this study, a novel differential methylation region located in the HGF promoter was identified, which was associated with aberrant HGF expression in NSCLC. The correlations of HGF promoter methylation detected by methylation specific PCR and HGF expression detected by immunohistochemistry with clinical outcomes were assessed in NSCLC patients. DNA methylation of the HGF promoter was correlated with the activation of HGF expression, which induced epithelial-mesenchymal transition, cell migration and invasion. According to the clinical correlation analysis in 63 NSCLC patients, those with high methylation were more likely to have stages III and IV (51.6% vs. 25.0%, P<0.05) and metastasis (57.5% vs. 16.7%, P<0.05) than patients with low methylation. In addition, compared with the protein marker of HGF expression, the DNA methylation marker of the HGF promoter had higher specificity for prognostic analysis of metastases in NSCLC. Our study indicated the regulatory mechanisms related to DNA methylation of the HGF promoter for HGF expression in NSCLC epithelial cells, and suggested that the DNA methylation signature of the HGF promoter could potentially be employed as a biomarker to improve the prognostic accuracy of NSCLC.