Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Aquac Nutr ; 2023: 6512136, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023985

RESUMEN

Epigallocatechin-3-gallate (EGCG) has been recognized as a potential additive for aquafeeds due to its beneficial biological functions. In order to evaluate the potential application of EGCG in Chinese rice field eel (Monopterus albus), six isonitrogenous and isolipidic diets containing 0, 25, 50, 100, 200, and 400 mg/kg EGCG were formulated and were fed to Monopterus albus (M. albus) for 9 weeks. The results showed that M. albus fed diets containing 0 and 100 mg/kg EGCG presented higher weight again and specific growth rate than the other groups. Fish fed with 25, 50, and 400 mg/kg EGCG displayed lower whole-body lipid content. Serum aspartate aminotransferase (AST) concentration significantly decreased in EGCG treated groups with the exception of 100 mg/kg group. Hepatic catalase (CAT) activity and glutathione (GSH) concentration decreased as EGCG level increased while malondialdehyde (MDA) concentration showed an opposite trend. EGCG supplementation resulted in a promoted lysozyme (LZM) activity and immunoglobulin M (IgM) level in the liver of M. albus. Furthermore, transcription of three immune related genes including major histocompatibility complex (mhc-2α), hepcidin, and interleukin-8 (il-8) mRNAs was upregulated by EGCG treatment; while transcription of interleukin-6 (il-6) and nuclear factor kappa-B (nf-kb) genes was downregulated. Results also showed a linear relation between EGCG inclusion level and parameters of AST, CAT, GSH, MDA, LZM, IgM, and immune-related genes transcriptions. In summary, it could be suggested that EGCG supplementation enhanced the nonspecific immune response of the Chinese rice field eel. Based on the broken-line regression analysis of IgM, the optimal dietary EGCG supplementation for M. albus was estimated to be 109.81 mg/kg.

2.
J Agric Food Chem ; 72(8): 4195-4206, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38354398

RESUMEN

The increase of polysaccharides in the dark tea pile process is thought to be connected to the cell wall polysaccharides' breakdown. However, the relationship between tea polysaccharides (TPSs) and tea cell wall polysaccharides has not been further explored. In this study, the structural changes in the cell wall polysaccharides [e.g., cellulose, hemicellulose (HC), and pectin] in Liupao tea were characterized before and after traditional fermentation and tank fermentation. Additionally, the degradation mechanism of tea cell wall polysaccharides during fermentation was assessed. The results showed that cellulose crystallinity decreased by 11.9-49.6% after fermentation. The molar ratio of monosaccharides, such as arabinose, rhamnose, and glucose in HC, was significantly reduced, and the molecular weight decreased. The esterification degree and linearity of water-soluble pectin (WSP) were reduced. TPS content increases during pile fermentation, which may be due to HC degradation and the increase in WSP caused by cell wall structure damage. Microorganisms were shown to be closely associated with the degradation of cell wall polysaccharides during fermentation according to correlation analyses. Traditional fermentation had a greater effect on the cellulose structure, while tank fermentation had a more noticeable impact on HC and WSP.


Asunto(s)
Camellia sinensis , Polisacáridos , Fermentación , Polisacáridos/química , Camellia sinensis/química , Pectinas/química , Celulosa/metabolismo , Agua/metabolismo , Pared Celular/química , Té/química , China
3.
Food Funct ; 14(3): 1584-1594, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36661107

RESUMEN

The offspring of gestational diabetes mellitus (GDM) mothers are considered to be at the risk of cardiovascular diseases due to intrauterine hyperglycemia exposure. Our previous study showed that zinc, selenium, and chromium dramatically alleviated glucose intolerance in GDM rats and their offspring (P < 0.05). However, the effects of these elements on the damage of the cardiac myocytes of GDM offspring and the underlying mechanisms have not been demonstrated. Here, we investigated the beneficial effects of zinc (10 mg per kg bw), selenium (20 µg per kg bw), and chromium (20 µg per kg bw) supplementation on myocardial fibrosis in the offspring of GDM rats induced by a high-fat and sucrose (HFS) diet. The results showed that maternal GDM induced glucose intolerance, oxidative stress, cardiac inflammation and myocardial fibrosis in offspring rats during different ages (3 days, 3 weeks, and adulthood), which were ameliorated by zinc, selenium and chromium supplementation (P < 0.05). The activity of cardiac damage markers such as creatine kinase-myocardial band isoenzyme (CK-MB), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) decreased by 40-60% in element-supplemented offspring compared to that in non-supplemented offspring of GDM dams (P < 0.05). Moreover, maternal GDM-induced expression of fibrosis-related proteins and the transforming growth factor-beta 1 (TGF-ß1)/small mothers against decapentaplegic homolog 3 (Smad3) signaling pathway in the heart tissue of offspring was down-regulated by zinc, selenium, and chromium supplementation (P < 0.05). In conclusion, zinc, selenium, and chromium may play a protective role in maternal GDM-induced myocardial fibrosis in offspring from birth to adulthood by inactivating the TGF-ß1/Smad3 pathway.


Asunto(s)
Cardiomiopatías , Diabetes Gestacional , Intolerancia a la Glucosa , Selenio , Embarazo , Humanos , Femenino , Ratas , Animales , Diabetes Gestacional/tratamiento farmacológico , Diabetes Gestacional/metabolismo , Factor de Crecimiento Transformador beta1 , Zinc , Fibrosis , Cardiomiopatías/etiología , Cardiomiopatías/prevención & control
4.
Food Funct ; 14(5): 2385-2391, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36779540

RESUMEN

Background: Docosahexaenoic acid (DHA, C22:6) is an important fatty acid in breast milk and is essential for infantile growth and cognitive development. However, the factors that affect the DHA concentration in breast milk have not been completely clarified. Objective: This study aimed to characterize the composition of breast milk fatty acids and to identify maternal factors associated with breast milk DHA concentration in postpartum women in Wuhan, China. Methods: In this cross-sectional study, we analyzed milk fatty acids in 115 lactating women at 30-120 days postpartum using GC-MS. Maternal sociodemographic, health and other information were collected using a self-reported questionnaire. Maternal dietary intake information was collected through a 24-hour dietary recall method. Postpartum depression status was identified using the Edinburgh Postnatal Depression Scale (EPDS). Results: The mean DHA proportion in breast milk was 0.49%. The multivariate regression model showed that the milk DHA proportion was positively associated with maternal aquatic product intake (ß = 0.183, 95%CI: 0.052, 0.314) and DHA supplement use (ß = 0.146, 95%CI: 0.108, 0.185), and negatively associated with postpartum depression status (ß = -0.122, 95%CI: -0.243, -0.002) after adjustment for several maternal and infant factors. Conclusion: Increasing maternal aquatic product intake and DHA supplement use and improving postpartum depression status may increase DHA concentration in breast milk in lactating women.


Asunto(s)
Depresión Posparto , Leche Humana , Lactante , Femenino , Humanos , Ácidos Docosahexaenoicos , Lactancia , Depresión Posparto/epidemiología , Estudios Transversales , Depresión , Periodo Posparto , Ingestión de Alimentos , Ácidos Grasos
5.
Foods ; 10(12)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34945598

RESUMEN

In this study, thymoquinone (TQ), a natural active substance, was investigated for its antibacterial activity against Bacillus cereus, and its inhibitory effect on B. cereus in reconstituted infant formula (RIF) was evaluated. In addition, the inhibitory effect of TQ on B. cereus spore germination was explored. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of TQ against eight B. cereus strains ranged from 4.0 to 8.0 µg/mL, whereas B. cereus treated with TQ displayed a longer lag phase than the untreated control. TQ exerted a good bactericidal effect on B. cereus in Luria-Bertani broth. In addition, TQ obviously reduced the intracellular ATP concentration of B. cereus, which caused depolarization of the cell membrane, increased the intracellular reactive oxygen species level, impaired the cell morphology, and destroyed proteins or inhibited proteins synthesis. This provides a mechanism for its bacteriostatic effect. TQ also inactivated B. cereus growth in RIF. Moreover, reverse transcription-quantitative polymerase chain reaction illustrated that TQ downregulated the transcription of genes related to hemolysin, non-hemolytic enterotoxin, enterotoxin, and cytotoxin K. Meanwhile, TQ displayed the ability to inhibit the germination of B. cereus spores. These findings indicate that TQ, as an effective natural antimicrobial preservative, has potential applications in controlling food contamination and foodborne diseases caused by B. cereus.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda