Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Ecotoxicol Environ Saf ; 263: 115366, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37573610

RESUMEN

Advanced oxidation processes (AOPs) based on ultrasound (US) have attracted considerable attention in recent years due to its advantages in the degradation of landfill leachate. The review summarizes the existing treatment methods of leachate from lab-scale, compares their advantages and disadvantages by focusing on the degradation of emerging contaminants (ECs) in the leachate. Then the US-based AOPs are introduced emphatically, including their degradation mechanisms, influencing factors, energy consumption, further optimization methods as well as the possibility of field-scale application are systematically described. Moreover, this review also expounds on the advantages of dual-frequency US (DFUS) technology compared with single-frequency US, and a theoretically feasible DFUS process is proposed to treat ECs in the leachate. Finally, suggestions and prospects for US technologies in treating landfill leachate are put forward to aid future research on landfill leachate treatment. Meaningfully, this manuscript will provide reference values of US-based technologies in landfill leachate treatment for the practical use, facilitating the development of US-based AOPs in landfill leachate management and disposal.


Asunto(s)
Contaminantes Químicos del Agua , Oxidación-Reducción
2.
J Environ Manage ; 324: 116376, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36208518

RESUMEN

With the increase of nitrogen (N) deposition, N input can affect soil C cycling since microbes may trigger a series of activities to balance the supply and demand of nutrients. However, as one of the largest C sinks on earth, the role of extra N addition in affecting peatland soil C and its potential mechanism remains unclear and debated. Therefore, this study chose the largest peatland in China (i.e., Zoige, mostly N-limited) to systematically explore the potential changes of soil C, microbes, and ecoenzymes caused by extra N input at the lab scale incubation. Three different types of soils were collected and incubated with different levels of NH4NO3 solution for 45 days. After incubation, N input generally increased soil organic C (SOC) but decreased dissolved organic carbon (DOC) in Zoige peatland soils. Moreover, CO2 and CH4 emissions were significantly increased after high N input (equal to 5 mg NH4NO3 g-1 dry soils). Through a series of analyses, it was observed that microbial communities and ecoenzyme activities mainly influenced the changes of different C components. Collectively, this study implied that the increasing N deposition might help C sequestration in N-limited peatland soils; simultaneously, the risk of increased CO2 and CH4 by N input in global warming should not be ignored.


Asunto(s)
Carbono , Suelo , Carbono/análisis , Nitrógeno/análisis , Dióxido de Carbono/análisis , Materia Orgánica Disuelta
3.
J Environ Manage ; 297: 113297, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34280863

RESUMEN

Controlling the release of phosphorus (P) in sediments is important to prevent eutrophication and harmful algal blooms in water bodies. Here we explored the effect of mobile aerators on the control of P release from sediments in a eutrophic pond. The dissolved oxygen in the water body recovered significantly after six months of aeration, becoming 4.2-5.8 times higher than in the control. The pH and Eh values at the sediment-water interface considerably increased, while the concentration of soluble reactive phosphorus (SRP) in pore water significantly decreased, resulting in the alteration of SRP fluxes from 1.69 mg/m2 d to -53.49 mg/m2 d. Moreover, the inert P in sediments increased by 5.2% of the total P at the end of the study compared with the initial state, and the calcium-bound phosphorus (HCl-P) increased by 96.6%. However, although aeration reduced the concentration of SRP in the water column, the total P concentration was 2.45 times higher than that of the control, and the content of redox-sensitive P (BD-P) in the sediment also increased by 200%. Overall, although mobile aeration can maintain the microenvironment of the sediment interface and increase the inert P content in the sediment to reduce the P flux, it cannot reduce the risk of release of mobile P.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Eutrofización , Sedimentos Geológicos , Floraciones de Algas Nocivas , Lagos , Estanques , Contaminantes Químicos del Agua/análisis
4.
J Environ Manage ; 258: 110052, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31929078

RESUMEN

The atmospheric pollution has been the public attention in recent years. In order to better coordinate economic development and atmospheric environmental management, China introduced the concept of atmospheric environmental capacity (AEC). The remaining atmospheric environmental capacity (RAEC) calculated by existing atmospheric pollution sources and AEC is an important basis for regional development and environmental protection. The RAEC of the high-pollution risk suburb of Chengdu in 2015 was estimated by the single-box model and analyzed on multiple time scales. The results show that the RAEC of SO2 and NO2 in this region is 3299 t/a and 2849 t/a, respectively under the annual time scale. However, in the daily time scale, the RAEC of NO2 is negative for 3 days, that is, there are 3 days with serious air pollution. Therefore, it is not appropriate to plan the industrial area only by relying on annual RAEC. Especially, RAEC displays inter-seasonal and monthly variability. On the one hand, in plain areas with low wind speed and little change in wind direction, achieving the prediction of atmospheric mixing layer height could give early warning of atmospheric pollution events. On the other hand, different management measures are taken on different time scales. On a long timescale, the regional energy structure should be optimized. On seasonal and monthly time scales, the production plans should be adapted to RAEC. On the daily time scale, it mainly deals with the serious atmospheric pollution accident timely.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , China , Monitoreo del Ambiente , Material Particulado , Estaciones del Año
5.
J Environ Sci (China) ; 88: 273-282, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31862068

RESUMEN

The effects of disinfection efficiency on microbial communities and the corrosion of cast iron pipes in drinking water distribution systems (DWDSs) were studied. Two annular reactors (ARs) that simulated actual running conditions with UV/Cl2 disinfection and chlorination alone were used. High chlorine consumption and corrosion rate were found in the AR with UV/Cl2. According to functional genes and pyrosequencing tests, a high percentage of iron recycling bacteria was detected within the biofilm of the AR with Cl2 at early running stage, whereas siderophore-producing bacteria were dominant in the biofilm of the AR with UV/Cl2. At the early running stage, the sequential use of UV light and an initial high chlorine dosage suppressed the biomass and iron-recycling bacteria in both bulk water and biofilms, thereby forming less protective scales against further corrosion, which enhanced chlorine consumption. Non-metric multidimensional scaling analysis showed that the bacterial communities in the ARs shaped from within rather than being imported by influents. These results indicate that the initial high disinfection efficiency within the distribution system had not contributed to the accumulation of iron-recycling bacteria at the early running stages. This study offer certain implications for controlling corrosion and water quality in DWDSs.


Asunto(s)
Agua Potable , Microbiota , Microbiología del Agua , Purificación del Agua , Biopelículas , Cloro , Corrosión , Desinfección , Abastecimiento de Agua
6.
J Environ Manage ; 245: 1-7, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31132628

RESUMEN

Nowadays, the plant residual derived biochars have been widely applied to remove nitrogen (N) and phosphorus (P) from water. However, the application of animal manure derived biochars in N and P removal was less studied. To compare the different efficiency and risk of plant residual- and animal manure-derived biochar in removing N and P from water, this study chose rice straw and swine manure as representative to produce biochar at 700 °C, and modified the produced biochar by MgCl2. Then, the characteristics, removal efficiency and release of N and P of biochars were investigated. The results showed swine manure-biochars generally had higher ash content and cation exchange capacity (CEC), but lower pH and surface area relative to rice straw-biochars. Besides, MgCl2 modification reduced the ash content and surface area of both raw biochars, whereas the pH, CEC and pore size were enhanced. Furthermore, this work demonstrated that ammonium and nitrate could be removed by all biochars to certain extent, and MgCl2 modified biochars generally had higher removal efficiency. However, none of phosphate removal was achieved by all biochars. Additionally, the release of ammonium, nitrate and phosphate from biochars was observed, suggesting there might be a risk for applying biochars in N and P removal from water. Notably, the MgCl2 modification seemed to accelerate N and P release from biochars. This work provided important information that the production and modification of biochars should be carefully designed for higher removal efficiency of pollutants. Meanwhile, the risk of released pollutants as well as the release mechanisms should be paid more attention in the future.


Asunto(s)
Estiércol , Oryza , Adsorción , Animales , Carbón Orgánico , Porcinos , Agua
7.
J Environ Sci (China) ; 69: 281-293, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29941264

RESUMEN

PM2.5 aerosol samples were collected over 12 hr and 24 hr intervals in an inland background area, Gongga Mountain National Nature Reserve (hereafter shortened to Gongga), during the summer of 2011. Polar organic tracers, inorganic ions and meteorological data were measured. The purpose of this work was to investigate the variation patterns, formation and sources of the secondary organic aerosol tracers in the studied atmosphere. The average concentrations of isoprene oxidation products, α-pinene oxidation products, ß-caryophyllinic acid, sugars, sugar alcohols and anhydrosugars were 88.6 ±â€¯106.1, 3.6 ±â€¯5.7, 0.13 ±â€¯0.30, 13.6 ±â€¯13.1, 31.9 ±â€¯31.4 and 14.8 ±â€¯10.7 ng/m3 respectively in all aerosol samples. The aged α-pinene second organic aerosol (SOA) tracers (i.e., 3-hydroxyglutraric acid (3HGA), 3-hydroxy-2,2-dimethylglutaric acid (HDMGA), 3-acetylpentandioic acid (APDA) and 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA)) correlated significantly with each other in the 24 hr PM2.5 aerosol samples, indicating that OH· is the major factor controlling the formation of these α-pinene SOA tracers. Using the positive matrix factorization (PMF) model and the tracer-based source apportionment method, we calculated that isoprene oxidation products, α-pinene oxidation products, sesquiterpene oxidation products, biomass burning, fungi spores and anthropogenic SOA accounted for 21.9% ±â€¯5.5%, 8.4% ±â€¯2.1%, 3.0% ±â€¯0.7%, 5.2% ±â€¯5.3%, 5.0% ±â€¯6.2% and 31.4% ±â€¯7.8% of organic carbon respectively during the sampling period.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Atmósfera/química , Butadienos , China , Hemiterpenos , Pentanos
8.
Bioresour Technol ; 402: 130790, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703964

RESUMEN

An ultrasound (US)/biochar (BC)/ferrate (Fe (VI)) system was firstly proposed to enhance perfluorooctanoic acid (PFOA) defluorination. It achieved 93 % defluorination optimally, higher than the sum of 77 % (28 % and 49 % for US/BC and US/Fe (VI) respectively), implying synergistic effect. Besides, the mechanism study confirmed that, this system can not only increase the specific surface area of BC and the generation of reactive oxidant species (ROS), enriching the active sites and forming new oxygen-containing functional groups, but also promote the formation of intermediate iron species. The PFOA degradation in the US/BC/Fe (VI) was probably an adsorption-degradation process, both ROS and electron transfer promoted the defluorination. Additionally, its sustainability was also demonstrated with 14 % reduced defluorination percentage after five cycles of BC. Overall, the synergistic effect of the US/BC/Fe (VI) and its enhancing mechanism for PFOA defluorination were clarified firstly, which contributes to the development of biochar for assisting polyfluoroalkyl substances degradation.


Asunto(s)
Caprilatos , Carbón Orgánico , Fluorocarburos , Hierro , Fluorocarburos/química , Caprilatos/química , Carbón Orgánico/química , Hierro/química , Halogenación , Ondas Ultrasónicas , Contaminantes Químicos del Agua , Adsorción , Especies Reactivas de Oxígeno/metabolismo
9.
Sci Total Environ ; 949: 175101, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39074757

RESUMEN

Recently, many reagents have been introduced to accelerate the formation of highly reactive intermediate Mn species from permanganate (KMnO4), thereby improving the oxidation activity of KMnO4 towards pollutants. However, most studies have mainly focused on sulfur-containing reducing agents (e.g., bisulfite and sodium sulfite), with little attention paid to nitrogen-containing reducing agents. This study found that hydroxylamine (HA) and hydroxylamine derivatives (HAs) can facilitate KMnO4 in pollutant removal. Taking sulfamethoxazole (SMX) as a target contaminant, the effect of pH, SMX concentration, KMnO4 and HA dosages, and the molar ratio of HA and KMnO4 on the degradation of SMX in the KMnO4/HA process was systematically investigated. Quenching experiments and probe analysis revealed MnO2-catalyzed KMnO4 oxidation, Mn(III) and reactive nitrogen species as the primary active species responsible for SMX oxidation in the KMnO4/HA system. Proposed transformation pathways of SMX in the KMnO4/HA system mainly involve hydroxylation and cleavage reactions. The KMnO4/HA system was more conducive to selective oxidation of SMX, 2,4-dichlorophenol, and several other pollutants, but reluctant to bisphenol S (BPS). Overall, this study proposed an effective system for eliminating pollutants, while providing mechanistic insight into HA-driven KMnO4 activation for environmental remediation.

10.
Bioresour Technol ; 408: 131194, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39094962

RESUMEN

The polymer-based denitrification system is an effective nitrate removal process for treating low carbon/nitrogen wastewater. However, in polymer denitrification systems, carbon used for the denitrification reaction is weakly targeted. Improving the efficiency of carbon utilization in denitrification is important to reduce carbon wastage. In this study, a symbiotic biofilm-sludge denitrification system was constructed using polycaprolactone as electron donors. Results show that the carbon release amount in 120 days was 85.32±0.46 g, and the unit mass of polycaprolactone could remove 1.55±0.01 g NO3--N. Meaningfully, the targeted carbon utilization efficiency for denitrification could achieve 79%-85%. The quantitative results showed that the release of electron donors can be well matched to the demand for electron acceptors in the biofilm-sludge denitrification system. Overall, the symbiotic system can improve the nitrate removal efficiency and reduce the waste of carbon source.


Asunto(s)
Biopelículas , Carbono , Desnitrificación , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Nitratos/metabolismo , Electrones , Poliésteres/química , Poliésteres/metabolismo , Polímeros/química , Simbiosis/fisiología , Purificación del Agua/métodos , Reactores Biológicos
11.
ACS Appl Mater Interfaces ; 16(40): 53822-53832, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39316712

RESUMEN

The worldwide transmission of infectious respiratory pathogens has caused innumerable deaths and suffering, while wearing a face mask is still the most effective way to terminate the respiratory infections spread. However, the frequent mask replacement as a result of the lack of pathogen sterilization ability not only increases the cross-contamination risk but also, even worse, produces a large amount of medical waste. In this work, we report on a ketonized carbonitride functionalized bioprotective face mask with pathogen sterilization activity that can effectively produce biocidal singlet oxygen triggered by light irradiation. Ketonized carbonitride loading on the outer layer of the mask is found to be capable of generating singlet oxygen, enabling the mask with antibacterial ability. Thanks to its high pathogen inactivation activity, the as-prepared mask exhibits long-term light triggered health protection performance, which, in return, reduces medical waste production as a result of the decreased mask replacement frequency. The synthesis of a fascinating bioprotective mask provides a new viewpoint into the development of personal bioprotective devices for health protection.


Asunto(s)
Luz , Máscaras , Antibacterianos/química , Antibacterianos/farmacología , Humanos , Oxígeno Singlete/química , Oxígeno Singlete/metabolismo , Escherichia coli/efectos de los fármacos
12.
Water Res ; 268(Pt A): 122582, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39395368

RESUMEN

Polymer denitrification has received much attention in the field of advanced wastewater treatment. It can release carbon source stably during long-term operation, which can be used as electron donor for denitrification. However, the response of the polymer denitrification system to the transient changes of nitrate is not sufficiently disclosed yet. In this study, the response of a polymer denitrification system to nitrate was comprehensively investigated through a series of experiments. Therefore, real-time response and hysteresis response phenomena were identified. The time dependence of microorganisms in the system and the recovery of the hysteresis response were elucidated. The experimental results revealed distinct response patterns before and after the hysteresis tipping point. The denitrifying microorganisms, which showed a high adaptive capacity, exhibited a real-time response over a range of low nitrate concentration variations (∼20-30 mg/L). In contrast, microbial recovery is poor over a range of high nitrate concentration variation (∼35-40 mg/L), which is referred to as a hysteresis response. Finally, the hysteresis response mechanism was revealed by monitoring the recovery of denitrification enzymes, gene and microbial communities. The results showed that transient shocks of high nitrate loads affect microbial community structure stability, denitrifying enzyme activity and gene expression. Meanwhile, the abundance of Microbacterium associated with carbon release was reduced. The combination of these factors leads to a hysteresis response in denitrification and carbon release. This work contributes to a deeper understanding of the hysteresis behavior in polymer denitrification systems, offering critical insights for optimizing system performance and improving nitrogen removal efficiency.

13.
Adv Sci (Weinh) ; 11(31): e2403098, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38898726

RESUMEN

Wearing face masks is the best way to stop the spread of respiratory infections. However, if masks are not sterilized, changing them too frequently can actually increase the risk of cross-contamination. Herein, the construction of an antipathogen photocatalytic mask with carbon vacancy-modified carbon nitride nanosheets (g-C3N4-VC Ns) coated on the non-woven fabrics of the out layer of the mask, offering effective and long-term protection against damaging pathogens when exposed to light is reported. The introduced carbon vacancies are found capable of creating energy-disordered sites and inducing energetic electric force to overcome the Coulomb interactions between electron-hole pairs, thus promoting the electron-hole separation to achieve a high generation of reactive oxygen species (ROS). Thanks to its high activity in generating ROS upon exposure to light, the as-prepared photocatalytic mask shows high pathogen sterilization performance. This, in turn, prolongs the mask's protective lifetime, decreases the need for regular replacement, and decreases medical waste production. The work demonstrated here opens new viewpoints in designing pathogens biocidal protective devices for health protection, offering significant promise in specific environment self-protection.


Asunto(s)
Máscaras , Nitrilos , Nitrilos/química , Luz , Humanos , Especies Reactivas de Oxígeno/metabolismo , Dispositivos de Protección Respiratoria , Diseño de Equipo/métodos
14.
Sci Total Environ ; 913: 169720, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38171457

RESUMEN

Over the past decades, considerable efforts have been made to find useful solutions for phosphate pollution control. The state transition of nanomaterials from freely dispersed to encapsulated provides a realizable route for their application in phosphate elimination. The separation convenience offered by encapsulation has been widely recognized, however, the unique binding mode of nanostructures and phosphate in the confined space remains unclear, limiting its further development. Here, carboxymethyl cellulose (CMC) microspheres were used as hosts to deploy layered double hydroxide (LDH) nanoparticles. On this basis, we described an attempt to explore the adsorption behavior of LDH and phosphate in the microsphere space. Compared to their freely dispersed analogues, LDH particles exhibited higher structural stability, wider pH adaptability, and better phosphate selectivity when spatially confined in the CMC microsphere. Nevertheless, the kinetic process was severely inhibited by three orders of magnitude. Besides, the saturated phosphate adsorption capacity was also reduced to 74.6 % of the freely dispersed system. A combinative characterization revealed that the highly electronegative CMC host not only causes electrostatic repulsion to phosphate, but also extracts the electron density of the metal center of LDH, weakening its ability to act as a Lewis acid site for phosphate binding. Meanwhile, the microsphere encapsulation also hinders the ion exchange function of interlayer anions and phosphate. This study offers an objective insight into the reaction of LDH and phosphate in the confined microsphere space, which may contribute to the advanced design of encapsulation strategies for nanoparticles.

15.
Sci Total Environ ; 900: 165815, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37506903

RESUMEN

The alteration of antibiotic resistance genes (ARGs) in wastewater has been less studied in wastewater treatment plants (WWTPs), making it difficult to assess ARGs' spreading risk comprehensively. Therefore, this study investigated the distribution and reduction of ARGs in the main process (Anaerobic-Anoxic-Oxic with Membrane Bio-Reactor (A2/O + MBR), Oxidation Ditch with sedimentation (OD), and Cyclic Activated Sludge System (CASS) with sedimentation) and disinfection process (Ultra-violet and Chlorination) of full-scale WWTPs. The wastewater was sampled before and after the different main process and disinfection process; then, the diversity and abundance of ARGs and mobile genetic genes (MGEs, helping the horizontal transfer of ARGs) in wastewater of different treatment stages were determined by a real-time high-throughput quantitative PCR (HT-qPCR) system. It was found that similar influents would result in similar ARGs in wastewater samples, independent of the treatment processes used. The main process could effectively reduce the abundance of ARGs and MGEs by 1.80-2.12 and 1.46-2.18 logarithm units, respectively. The main factors affecting ARGs were mainly wastewater quality index, especially COD, and MGEs like transposase and insertion sequences which were significantly associated with 66 and 48 subtypes of ARGs, respectively. Moreover, disinfection was more effective than the main process in inactivating antibiotic resistance bacteria (ARB), and the removal rate of ARB by disinfection reached 43.53 %-100 %. However, there are still risks of ARB regeneration (up to 4.22 log units) in the effluent of WWTPs. In the future, nutrient removal and disinfection process improvement is necessary to benefit ARG and ARB removal.


Asunto(s)
Genes Bacterianos , Aguas Residuales , Antibacterianos/farmacología , Antagonistas de Receptores de Angiotensina , Farmacorresistencia Microbiana/genética , Inhibidores de la Enzima Convertidora de Angiotensina
16.
Sci Total Environ ; 858(Pt 1): 159785, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309262

RESUMEN

Utilization of allelochemicals to inhibit overgrowth of toxic cyanobacteria is considered to be an environmentally friendly approach. However, the regulatory role of the signaling molecule nitric oxide (NO) on cyanobacteria under allelopathic stress remains unanswered. Here we demonstrate that the effect of NO on the cyanobacterium Microcystis aeruginosa depends on allelopathic stress of pyrogallic acid (PA). The experimental results revealed that general stimulation of M. aeruginosa by PA occurred within the concentration range 0.4-0.8 mg/L. In parallel with increasing concentration of PA (1.6-16.0 mg/L), the growth of M. aeruginosa was observed to decrease. The effect of NO on M. aeruginosa was evaluated by addition of the NO scavenger hemoglobin. In the stimulation stage, intracellular NO was seen to decreased to modulate the level of reactive oxygen species (ROS) and to maintain redox homeostasis of the cells. In the inhibition stage, the physiological characteristics of M. aeruginosa were changed significantly. Additionally, the accumulation of S-nitrosothiol by M. aeruginosa indicated that the high concentrations of PA induced nitric oxidative stress in M. aeruginosa. This study provides a new thought to understand the role of NO in controlling harmful algal blooms through the allelopathic effect of aquatic macrophytes.


Asunto(s)
Cianobacterias , Microcystis , Microcystis/fisiología , Floraciones de Algas Nocivas , Pirogalol/farmacología , Óxido Nítrico
17.
Appl Microbiol Biotechnol ; 95(5): 1097-104, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22763846

RESUMEN

Magnetotactic bacteria (MTB), which can orient and migrate along a magnetic line of force due to intracellular nanosized magnetosomes, have been a subject of research in the medical field, in dating environmental changes, and in environmental remediation. This paper reviews the recent development of MTB as biosorbents for heavy metals. Ultrastructures and taxis of MTB are investigated. Adsorptions in systems of unitary and binary ions are highlighted, as well as adsorption conditions (temperature, pH value, biomass concentration, and pretreatments). The separation and desorption of MTB in magnetic separators are also discussed. A green method to produce metal nanoparticles is provided, and an energy-efficient way to recover precious metals is put forward during biosorption.


Asunto(s)
Bacterias/metabolismo , Contaminantes Ambientales/metabolismo , Metales Pesados/metabolismo , Bacterias/citología , Biodegradación Ambiental , Magnetosomas/metabolismo
18.
J Environ Monit ; 14(9): 2392-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22797714

RESUMEN

Ethylenediaminotetraacetic acid (EDTA) occurring in groundwater aquifers complicates the prediction of nanoparticle movement in the porous medium. This paper demonstrates an approach combining Triple Pulse Experiments (TPEs) and numerical modelling to quantify the influence of EDTA on the deposition and retention of polymer nanoparticles in a water-saturated column packed with iron-oxide-coated sand. TPEs injecting three successive pulses in the order of nanoparticle, EDTA, nanoparticle permit nanoparticle deposition in the absence and the presence of EDTA to be compared. Random Sequential Adsorption (RSA) modelling of the nanoparticle breakthrough curves combining mass balance calculation allows the influence of EDTA to be quantified. TPE results demonstrate that the injected EDTA eluted the oxide coatings (favorable deposition sites) from the sand surface and the resulting decline in sites led to enhanced nanoparticle mobility in the subsequent pulse. Quantification results suggest that at the experimental time-scale and under the controlled conditions, elution of one deposition site requires injection of 2.4 × 10(11) EDTA molecules. In total, 75 gram EDTA needs to be injected to remove all the column sites.


Asunto(s)
Ácido Edético/química , Restauración y Remediación Ambiental/métodos , Compuestos Férricos/química , Nanopartículas/química , Polímeros/química , Dióxido de Silicio/química , Adsorción , Agua Subterránea/química , Modelos Químicos
19.
Bull Environ Contam Toxicol ; 89(2): 251-6, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22562418

RESUMEN

This study investigated the sensitivity of plant species to acid rain based on the modeled dosage-response relationship on the net photosynthetic rate (P (N)) of 21 types of plant species, subjected to the exposure of simulated acid rain (SAR) for 5 times during a period of 50 days. Variable responses of P (N) to SAR occurred depending on the type of plant. A majority (13 species) of the dosage-response relationship could be described by an S-shaped curve and be fitted with the Boltzmann model. Model fitting allowed quantitative evaluation of the dosage-response relationship and an accurate estimation of the EC(10), termed as the pH of the acid rain resulting in a P (N) 10 % lower than the reference value. The top 9 species (Camellia sasanqua, Cinnamomum camphora, etc. EC(10) ≤ 3.0) are highly endurable to very acid rain. The rare, relict plant Metasequoia glyptostroboides was the most sensitive species (EC(10) = 5.1) recommended for protection.


Asunto(s)
Lluvia Ácida/efectos adversos , Fotosíntesis/efectos de los fármacos , Plantas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Concentración de Iones de Hidrógeno , Modelos Biológicos , Plantas/metabolismo
20.
Sci Total Environ ; 853: 158602, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36089049

RESUMEN

Hydropower is a source of climate-friendly energy; however, its ecological impacts have been criticized. Few studies have considered the greenhouse gas (GHG) emissions resulting from ecosystem restoration. This study proposes a techno-ecological synergy framework based on life cycle assessment (LCA) to evaluate 34 hydropower plants (HPs) in the upper reaches of the Yangtze River from GHG supply and demand side perspectives. Our results show that the demand unit carbon footprint of the 34 HPs ranged from 5.43 to 49.36 g CO2-eq/kWh, while the imputed GHG emissions from ecosystem restoration occupied 1.22 % to 30.35 %. The unit carbon footprint of large HPs were larger than those of small HPs, and both were positively correlated with the installed capacity of the HPs. All the HPs were unsustainable at the local scale and relied on regional ecosystem supplies. The Sobol' sensitivity analysis and Monte Carlo simulations demonstrated the reliability of our results. Finally, our results were used to consider the related policy implications.


Asunto(s)
Gases de Efecto Invernadero , Gases de Efecto Invernadero/análisis , Efecto Invernadero , Dióxido de Carbono/análisis , Ecosistema , Reproducibilidad de los Resultados , Huella de Carbono
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda