Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35145026

RESUMEN

Bacteroides thetaiotaomicron is a gut symbiont that inhabits the mucus layer and adheres to and metabolizes food particles, contributing to gut physiology and maturation. Although adhesion and biofilm formation could be key features for B. thetaiotaomicron stress resistance and gut colonization, little is known about the determinants of B. thetaiotaomicron biofilm formation. We previously showed that the B. thetaiotaomicron reference strain VPI-5482 is a poor in vitro biofilm former. Here, we demonstrated that bile, a gut-relevant environmental cue, triggers the formation of biofilm in many B. thetaiotaomicron isolates and common gut Bacteroidales species. We determined that bile-dependent biofilm formation involves the production of the DNase BT3563 or its homologs, degrading extracellular DNA (eDNA) in several B. thetaiotaomicron strains. Our study therefore shows that, although biofilm matrix eDNA provides a biofilm-promoting scaffold in many studied Firmicutes and Proteobacteria, BT3563-mediated eDNA degradation is required to form B. thetaiotaomicron biofilm in the presence of bile.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteroides thetaiotaomicron/enzimología , Bilis/metabolismo , Biopelículas/crecimiento & desarrollo , Desoxirribonucleasas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas Bacterianas/genética , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/fisiología , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Desoxirribonucleasas/genética , Regulación Enzimológica de la Expresión Génica/fisiología
2.
BMC Microbiol ; 19(1): 259, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31752683

RESUMEN

BACKGROUND: Multidrug resistant Acinetobacter baumannii is one of the major infection agents causing nosocomial pneumonia. Therefore, new therapeutic approaches against this bacterium are needed. Surface-exposed proteins from bacterial pathogens are implicated in a variety of virulence-related traits and are considered as promising candidates for vaccine development. RESULTS: We show in this study that a large Blp1 protein from opportunistic pathogen A. baumannii is encoded in all examined clinical strains of globally spread international clonal lineages I (IC I) and II (IC II). The two blp1 gene variants exhibit lineage-specific distribution profile. By characterization of blp1 deletion mutants and their complementation with blp1 alleles we show that blp1 gene is required for A. baumannii biofilm formation and adhesion to epithelial cells in IC I strain but not in the IC II strain. Nevertheless both alleles are functional in restoring the deficient phenotypes of IC I strain. Moreover, the blp1 gene is required for the establishing of A. baumannii virulence phenotype in nematode and murine infection models. Additionally, we demonstrate that C-terminal 711 amino acid fragment of Blp1 elicits an efficient protection to lethal A. baumannii infection in a murine model using active and passive immunization approaches. Antiserum obtained against Blp1-specific antigen provides opsonophagocytic killing of A. baumannii in vitro. CONCLUSIONS: Lineage-specific variants of surface-exposed components of bacterial pathogens complicate the development of new therapeutic approaches. Though we demonstrated different impact of Blp1 variants on adherence of IC I and IC II strains, Blp1-specific antiserum neutralized A. baumannii strains of both clonal lineages. Together with the observed increased survival rate in vaccinated mice these results indicate that A. baumannii Blp1 protein could be considered as a new vaccine candidate.


Asunto(s)
Infecciones por Acinetobacter/inmunología , Acinetobacter baumannii/patogenicidad , Factores de Virulencia/genética , Factores de Virulencia/inmunología , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/genética , Acinetobacter baumannii/inmunología , Animales , Biopelículas , Caenorhabditis elegans , Adhesión Celular , Línea Celular , Modelos Animales de Enfermedad , Femenino , Variación Genética , Ratones
3.
Molecules ; 24(10)2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121924

RESUMEN

Acinetobacter baumannii is a nosocomial human pathogen of increasing concern due to its multidrug resistance profile. The outer membrane protein A (OmpA) is an abundant bacterial cell surface component involved in A. baumannii pathogenesis. It has been shown that the C-terminal domain of OmpA is located in the periplasm and non-covalently associates with the peptidoglycan layer via two conserved amino acids, thereby anchoring OmpA to the cell wall. Here, we investigated the role of one of the respective residues, D268 in OmpA of A. baumannii clinical strain Ab169, on its virulence characteristics by complementing the ΔompA mutant with the plasmid-borne ompAD268A allele. We show that while restoring the impaired biofilm formation of the ΔompA strain, the Ab169ompAD268A mutant tended to form bacterial filaments, indicating the abnormalities in cell division. Moreover, the Ab169 OmpA D268-mediated association to peptidoglycan was required for the manifestation of twitching motility, desiccation resistance, serum-induced killing, adhesion to epithelial cells and virulence in a nematode infection model, although it was dispensable for the uptake of ß-lactam antibiotics by outer membrane vesicles. Overall, the results of this study demonstrate that the OmpA C-terminal domain-mediated association to peptidoglycan is critical for a number of virulent properties displayed by A. baumannii outside and within the host.


Asunto(s)
Acinetobacter baumannii/patogenicidad , Proteínas de la Membrana Bacteriana Externa/metabolismo , Mutación , Peptidoglicano/metabolismo , Acinetobacter baumannii/genética , Asparagina/genética , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Biopelículas , Dominios Proteicos , Virulencia
4.
Appl Environ Microbiol ; 84(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29247061

RESUMEN

Integrative conjugative elements (ICEs) are chromosomal elements that are widely distributed in bacterial genomes, hence contributing to genome plasticity, adaptation, and evolution of bacteria. Conjugation requires a contact between both the donor and the recipient cells and thus likely depends on the composition of the cell surface envelope. In this work, we investigated the impact of different cell surface molecules, including cell surface proteins, wall teichoic acids, lipoteichoic acids, and exopolysaccharides, on the transfer and acquisition of ICESt3 from Streptococcus thermophilus The transfer of ICESt3 from wild-type (WT) donor cells to mutated recipient cells increased 5- to 400-fold when recipient cells were affected in lipoproteins, teichoic acids, or exopolysaccharides compared to when the recipient cells were WT. These mutants displayed an increased biofilm-forming ability compared to the WT, suggesting better cell interactions that could contribute to the increase of ICESt3 acquisition. Microscopic observations of S. thermophilus cell surface mutants showed different phenotypes (aggregation in particular) that can also have an impact on conjugation. In contrast, the same mutations did not have the same impact when the donor cells, instead of recipient cells, were mutated. In that case, the transfer frequency of ICESt3 decreased compared to that with the WT. The same observation was made when both donor and recipient cells were mutated. The dominant effect of mutations in donor cells suggests that modifications of the cell envelope could impair the establishment or activity of the conjugation machinery required for DNA transport.IMPORTANCE ICEs contribute to horizontal gene transfer of adaptive traits (for example, virulence, antibiotic resistance, or biofilm formation) and play a considerable role in bacterial genome evolution, thus underlining the need of a better understanding of their conjugative mechanism of transfer. While most studies focus on the different functions encoded by ICEs, little is known about the effect of host factors on their conjugative transfer. Using ICESt3 of S. thermophilus as a model, we demonstrated the impact of lipoproteins, teichoic acids, and exopolysaccharides on ICE transfer and acquisition. This opens up new avenues to control gene transfer mediated by ICEs.


Asunto(s)
Conjugación Genética , Transferencia de Gen Horizontal , Genoma Bacteriano , Streptococcus thermophilus/genética , Evolución Molecular
5.
Appl Environ Microbiol ; 82(17): 5309-19, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27342550

RESUMEN

UNLABELLED: Salmonella is recognized as one of the most significant enteric foodborne bacterial pathogens. In recent years, the resistance of pathogens to biocides and other environmental stresses, especially when they are embedded in biofilm structures, has led to the search for and development of novel antimicrobial strategies capable of displaying both high efficiency and safety. In this direction, the aims of the present work were to evaluate the antimicrobial activity of hydrosol of the Mediterranean spice Thymbra capitata against both planktonic and biofilm cells of Salmonella enterica serovar Typhimurium and to compare its action with that of benzalkonium chloride (BC), a commonly used industrial biocide. In order to achieve this, the disinfectant activity following 6-min treatments was comparatively evaluated for both disinfectants by calculating the concentrations needed to achieve the same log reductions against both types of cells. Their bactericidal effect against biofilm cells was also comparatively determined by in situ and real-time visualization of cell inactivation through the use of time-lapse confocal laser scanning microscopy (CLSM). Interestingly, results revealed that hydrosol was almost equally effective against biofilms and planktonic cells, whereas a 200-times-higher concentration of BC was needed to achieve the same effect against biofilm compared to planktonic cells. Similarly, time-lapse CLSM revealed the significant advantage of the hydrosol to easily penetrate within the biofilm structure and quickly kill the cells, despite the three-dimensional (3D) structure of Salmonella biofilm. IMPORTANCE: The results of this paper highlight the significant antimicrobial action of a natural compound, hydrosol of Thymbra capitata, against both planktonic and biofilm cells of a common foodborne pathogen. Hydrosol has numerous advantages as a disinfectant of food-contact surfaces. It is an aqueous solution which can easily be rinsed out from surfaces, it does not have the strong smell of the essential oil (EO) and it is a byproduct of the EO distillation procedure without any industrial application until now. Consequently, hydrosol obviously could be of great value to combat biofilms and thus to improve product safety not only for the food industries but probably also for many other industries which experience biofilm-related problems.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Desinfectantes/farmacología , Lamiaceae/química , Extractos Vegetales/farmacología , Salmonella typhimurium/efectos de los fármacos , Antibacterianos/química , Desinfectantes/química , Desinfectantes/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Salmonella typhimurium/fisiología
6.
Food Microbiol ; 53(Pt A): 51-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26611169

RESUMEN

Few studies have extensively investigated probiotic functions associated with biofilms. Here, we show that strains of Lactobacillus plantarum and Lactobacillus fermentum are able to grow as biofilm on abiotic surfaces, but the biomass density differs between strains. We performed microtiter plate biofilm assays under growth conditions mimicking to the gastrointestinal environment. Osmolarity and low concentrations of bile significantly enhanced Lactobacillus spatial organization. Two L. plantarum strains were able to form biofilms under high concentrations of bile and mucus. We used the agar well-diffusion method to show that supernatants from all Lactobacillus except the NA4 isolate produced food pathogen inhibitory molecules in biofilm. Moreover, TNF-α production by LPS-activated human monocytoid cells was suppressed by supernatants from Lactobacillus cultivated as biofilms but not by planktonic culture supernatants. However, only L. fermentum NA4 showed anti-inflammatory effects in zebrafish embryos fed with probiotic bacteria, as assessed by cytokine transcript level (TNF-α, IL-1ß and IL-10). We conclude that the biofilm mode of life is associated with beneficial probiotic properties of lactobacilli, in a strain dependent manner. Those results suggest that characterization of isolate phenotype in the biofilm state could be additional valuable information for the selection of probiotic strains.


Asunto(s)
Antibiosis , Biopelículas/crecimiento & desarrollo , Lactobacillus plantarum/crecimiento & desarrollo , Lactobacillus plantarum/fisiología , Limosilactobacillus fermentum/crecimiento & desarrollo , Limosilactobacillus fermentum/fisiología , Probióticos , Animales , Bilis/microbiología , Medios de Cultivo/química , Escherichia coli/fisiología , Humanos , Inmunidad Innata , Inmunomodulación , Interleucina-10/biosíntesis , Limosilactobacillus fermentum/inmunología , Lactobacillus plantarum/inmunología , Monocitos/inmunología , Moco/microbiología , Salmonella enterica/fisiología , Factor de Necrosis Tumoral alfa/biosíntesis , Pez Cebra
7.
Cell Microbiol ; 16(12): 1836-53, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25052472

RESUMEN

The predominant form of life for microorganisms in their natural habitats is the biofilm mode of growth. The adherence and colonization of probiotic bacteria are considered as essential factors for their immunoregulatory function in the host. Here, we show that Lactobacillus casei ATCC334 adheres to and colonizes the gut of zebrafish larvae. The abundance of pro-inflammatory cytokines and the recruitment of macrophages were low when inflammation was induced in probiotic-fed animals, suggesting that these bacteria have anti-inflammatory properties. We treated human macrophage-differentiated monocytic THP-1 cells with supernatants of L. casei ATCC334 grown in either biofilm or planktonic cultures. TNF-α production was suppressed and the NF-κB pathway was inhibited only in the presence of supernatants from biofilms. We identified GroEL as the biofilm supernatant compound responsible, at least partially, for this anti-inflammatory effect. Gradual immunodepletion of GroEL demonstrated that the abundance of GroEL and TNF-α were inversely correlated. We confirmed that biofilm development in other Lactobacillus species affects the immune response. The biofilms supernatants of these species also contained large amounts of GroEL. Thus, our results demonstrate that the biofilm enhances the immunomodulatory effects of Lactobacillus sp. and that secreted GroEL is involved in this beneficial effect.


Asunto(s)
Adhesión Bacteriana , Biopelículas/crecimiento & desarrollo , Lacticaseibacillus casei/inmunología , Lacticaseibacillus casei/fisiología , Pez Cebra/inmunología , Pez Cebra/microbiología , Animales , Antiinflamatorios/metabolismo , Línea Celular , Chaperonina 60/metabolismo , Tracto Gastrointestinal/microbiología , Humanos , Tolerancia Inmunológica , Lacticaseibacillus casei/metabolismo , Larva/microbiología , Macrófagos/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
8.
Proc Natl Acad Sci U S A ; 109(32): 13088-93, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22773813

RESUMEN

Bacteria grow in either planktonic form or as biofilms, which are attached to either inert or biological surfaces. Both growth forms are highly relevant states in nature and of paramount scientific focus. However, interchanges between bacteria in these two states have been little explored. We discovered that a subpopulation of planktonic bacilli is propelled by flagella to tunnel deep within a biofilm structure. Swimmers create transient pores that increase macromolecular transfer within the biofilm. Irrigation of the biofilm by swimmer bacteria may improve biofilm bacterial fitness by increasing nutrient flow in the matrix. However, we show that the opposite may also occur (i.e., swimmers can exacerbate killing of biofilm bacteria by facilitating penetration of toxic substances from the environment). We combined these observations with the fact that numerous bacteria produce antimicrobial substances in nature. We hypothesized and proved that motile bacilli expressing a bactericide can also kill a heterologous biofilm population, Staphylococcus aureus in this case, and then occupy the newly created space. These findings identify microbial motility as a determinant of the biofilm landscape and add motility to the complement of traits contributing to rapid alterations in biofilm populations.


Asunto(s)
Bacillus thuringiensis/fisiología , Biopelículas/crecimiento & desarrollo , Matriz Extracelular/metabolismo , Locomoción/fisiología , Interacciones Microbianas/fisiología , Bacillus thuringiensis/metabolismo , Fluoresceína-5-Isotiocianato , Proteínas Fluorescentes Verdes , Cinética , Lisostafina/metabolismo , Microscopía Fluorescente , Especificidad de la Especie , Staphylococcus aureus/efectos de los fármacos , Factores de Tiempo , Imagen de Lapso de Tiempo
9.
Environ Microbiol ; 16(4): 1176-92, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24102749

RESUMEN

Listeria monocytogenes has a dichotomous lifestyle, existing as an ubiquitous saprophytic species and as an opportunistic intracellular pathogen. Besides its capacity to grow in a wide range of environmental and stressful conditions, L. monocytogenes has the ability to adhere to and colonize surfaces. Morphotype variation to elongated cells forming rough colonies has been reported for different clinical and environmental isolates, including biofilms. This cell differentiation is mainly attributed to the reduced secretion of two SecA2-dependent cell-wall hydrolases, CwhA and MurA. SecA2 is a non-essential SecA paralogue forming an alternative translocase with the primary Sec translocon. Following investigation at temperatures relevant to its ecological niches, i.e. infection (37°C) and environmental (20°C) conditions, inactivation of this SecA2-only protein export pathway led, despite reduced adhesion, to the formation of filamentous biofilm with aerial structures. Compared to the wild type strain, inactivation of the SecA2 pathway promoted extensive cell aggregation and sedimentation. At ambient temperature, this effect was combined with the abrogation of cell motility resulting in elongated sedimented cells, which got knotted and entangled together in the course of filamentous-biofilm development. Such a cell differentiation provides a decisive advantage for listerial surface colonization under environmental condition. As further discussed, this morphotypic conversion has strong implication on listerial physiology and is also of potential significance for asymptomatic human/animal carriage.


Asunto(s)
Proteínas Bacterianas/fisiología , Biopelículas/crecimiento & desarrollo , Listeria monocytogenes/fisiología , Agregación Celular , Listeria monocytogenes/citología , Microscopía Confocal , Temperatura
10.
Soft Matter ; 10(25): 4561-8, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24817568

RESUMEN

Controlling the deformation of microcapsules and capsules is essential in numerous biomedical applications. The mechanical properties of the membrane of microcapsules made of cross-linked human serum albumin (HSA) are revealed by two complementary experiments in the linear elastic regime. The first provides the surfacic shear elastic modulus Gs by the study of small deformations of a single capsule trapped in an elongational flow: Gs varies from 0.002 to 5 N m(-1). The second gives the volumic Young's modulus E of the membrane by shallow and local indentations of the membrane with an AFM probe: E varies from 20 kPa to 1 MPa. The surfacic and volumic elastic moduli increase with the size of the capsule up to three orders of magnitude and with the protein concentration of the membrane. The membrane thickness is evaluated from these two membrane mechanical characteristics and increases with the size and the initial HSA concentration from 2 to 20 µm.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Ácidos Ftálicos/química , Albúmina Sérica/química , Cápsulas , Módulo de Elasticidad , Microscopía de Fuerza Atómica
11.
mBio ; 15(5): e0348823, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38534200

RESUMEN

Bacteroides thetaiotaomicron is a prominent member of the human gut microbiota contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm lifestyle, and it was recently shown that B. thetaiotaomicron biofilm formation is promoted by the presence of bile. This process also requires a B. thetaiotaomicron extracellular DNase, which is not, however, regulated by bile. Here, we showed that bile induces the expression of several Resistance-Nodulation-Division (RND) efflux pumps and that inhibiting their activity with a global competitive efflux inhibitor impaired bile-dependent biofilm formation. We then showed that, among the bile-induced RND-efflux pumps, only the tripartite BT3337-BT3338-BT3339 pump, re-named BipABC [for Bile Induced Pump A (BT3337), B (BT3338), and C (BT3339)], is required for biofilm formation. We demonstrated that BipABC is involved in the efflux of magnesium to the biofilm extracellular matrix, which leads to a decrease of extracellular DNA concentration. The release of magnesium in the biofilm matrix also impacts biofilm structure, potentially by modifying the electrostatic repulsion forces within the matrix, reducing interbacterial distance and allowing bacteria to interact more closely and form denser biofilms. Our study therefore, identified a new molecular determinant of B. thetaiotaomicron biofilm formation in response to bile salts and provides a better understanding on how an intestinal chemical cue regulates biofilm formation in a major gut symbiont.IMPORTANCEBacteroides thetaiotaomicron is a prominent member of the human gut microbiota able to degrade dietary and host polysaccharides, altogether contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm community lifestyle, providing protection against environmental factors that might, in turn, protect the host from dysbiosis and dysbiosis-related diseases. It was recently shown that B. thetaiotaomicron exposure to intestinal bile promotes biofilm formation. Here, we reveal that a specific B. thetaiotaomicron membrane efflux pump is induced in response to bile, leading to the release of magnesium ions, potentially reducing electrostatic repulsion forces between components of the biofilm matrix. This leads to a reduction of interbacterial distance and strengthens the biofilm structure. Our study, therefore, provides a better understanding of how bile promotes biofilm formation in a major gut symbiont, potentially promoting microbiota resilience to stress and dysbiosis events.


Asunto(s)
Proteínas Bacterianas , Bacteroides thetaiotaomicron , Bilis , Biopelículas , Magnesio , Biopelículas/crecimiento & desarrollo , Bacteroides thetaiotaomicron/fisiología , Bacteroides thetaiotaomicron/metabolismo , Magnesio/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Bilis/metabolismo , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Microbioma Gastrointestinal/fisiología , Regulación Bacteriana de la Expresión Génica
12.
Gut Microbes ; 16(1): 2301147, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38289292

RESUMEN

Clostridioides difficile (C. difficile), a gram-positive anaerobic and spore-forming bacterium, is the leading cause of nosocomial antibiotic-associated diarrhea in adults which is characterized by high levels of recurrence and mortality. Surface (S)-layer Protein A (SlpA), the most abundantly expressed protein on the bacterial surface, plays a crucial role in the early stages of infection although the nature of its involvement in C. difficile physiology is yet to be fully understood. Anti-S-layer antibodies have been identified in the sera of convalescent patients and have been correlated with improved outcomes of C. difficile infection (CDI). However, the precise mechanisms by which anti-S-layer antibodies confer protection to the host remain unknown. In this study, we report the first monoclonal antibodies (mAbs) targeting the S-layer of reference strain 630. Characterization of these mAbs unraveled important roles for the S-layer protein in growth, toxin secretion, and biofilm formation by C. difficile, with differential and even opposite effects of various anti-SlpA mAbs on these functions. Moreover, one anti-SlpA mAb impaired C. difficile growth and conferred sensitivity to lysozyme-induced lysis. The results of this study show that anti-S-layer antibody responses can be beneficial or harmful for the course of CDI and provide important insights for the development of adequate S-layer-targeting therapeutics.


Asunto(s)
Clostridioides difficile , Microbioma Gastrointestinal , Adulto , Humanos , Anticuerpos Monoclonales/uso terapéutico , Muerte Celular
13.
Biofilm ; 5: 100125, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37214349

RESUMEN

Clostridioides difficile infection associated to gut microbiome dysbiosis is the leading cause for nosocomial diarrhea. The ability of C. difficile to form biofilms has been progressively linked to its pathogenesis as well as its persistence in the gut. Although C. difficile has been reported to form biofilms in an increasing number of conditions, little is known about how these biofilms are formed in the gut and what factors may trigger their formation. Here we report that succinate, a metabolite abundantly produced by the dysbiotic gut microbiota, induces in vitro biofilm formation of C. difficile strains. We characterized the morphology and spatial composition of succinate-induced biofilms, and compared to non-induced or deoxycholate (DCA) induced biofilms. Biofilms induced by succinate are significantly thicker, structurally more complex, and poorer in proteins and exopolysaccharides (EPS). We then applied transcriptomics and genetics to characterize the early stages of succinate-induced biofilm formation and we showed that succinate-induced biofilm results from major metabolic shifts and cell-wall composition changes. Similar to DCA-induced biofilms, biofilms induced by succinate depend on the presence of a rapidly metabolized sugar. Finally, although succinate can be consumed by the bacteria, we found that the extracellular succinate is in fact responsible for the induction of biofilm formation through complex regulation involving global metabolic regulators and the osmotic stress response. Thus, our work suggests that as a gut signal, succinate may drive biofilm formation and help persistence of C. difficile in the gut, increasing the risk of relapse.

14.
Nat Commun ; 14(1): 7546, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985771

RESUMEN

Bacillus subtilis can form various types of spatially organised communities on surfaces, such as colonies, pellicles and submerged biofilms. These communities share similarities and differences, and phenotypic heterogeneity has been reported for each type of community. Here, we studied spatial transcriptional heterogeneity across the three types of surface-associated communities. Using RNA-seq analysis of different regions or populations for each community type, we identified genes that are specifically expressed within each selected population. We constructed fluorescent transcriptional fusions for 17 of these genes, and observed their expression in submerged biofilms using time-lapse confocal laser scanning microscopy (CLSM). We found mosaic expression patterns for some genes; in particular, we observed spatially segregated cells displaying opposite regulation of carbon metabolism genes (gapA and gapB), indicative of distinct glycolytic or gluconeogenic regimes coexisting in the same biofilm region. Overall, our study provides a direct comparison of spatial transcriptional heterogeneity, at different scales, for the three main models of B. subtilis surface-associated communities.


Asunto(s)
Bacillus subtilis , Biopelículas , Bacillus subtilis/metabolismo , Microscopía Confocal , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
15.
Biofilm ; 6: 100152, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37694162

RESUMEN

The Bacillus subtilis strain NDmed was isolated from an endoscope washer-disinfector in a medical environment. NDmed can form complex macrocolonies with highly wrinkled architectural structures on solid medium. In static liquid culture, it produces thick pellicles at the interface with air as well as remarkable highly protruding ''beanstalk-like'' submerged biofilm structures at the solid surface. Since these mucoid submerged structures are hyper-resistant to biocides, NDmed has the ability to protect pathogens embedded in mixed-species biofilms by sheltering them from the action of these agents. Additionally, this non-domesticated and highly biofilm forming strain has the propensity of being genetically manipulated. Due to all these properties, the NDmed strain becomes a valuable model for the study of B. subtilis biofilms. This review focuses on several studies performed with NDmed that have highlighted the sophisticated genetic dynamics at play during B. subtilis biofilm formation. Further studies in project using modern molecular tools of advanced technologies with this strain, will allow to deepen our knowledge on the emerging properties of multicellular bacterial life.

16.
mSphere ; 8(2): e0049522, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36794931

RESUMEN

Enterococcus cecorum is an emerging pathogen responsible for osteomyelitis, spondylitis, and femoral head necrosis causing animal suffering and mortality and requiring antimicrobial use in poultry. Paradoxically, E. cecorum is a common inhabitant of the intestinal microbiota of adult chickens. Despite evidence suggesting the existence of clones with pathogenic potential, the genetic and phenotypic relatedness of disease-associated isolates remains little investigated. Here, we sequenced and analyzed the genomes and characterized the phenotypes of more than 100 isolates, the majority of which were collected over the last 10 years from 16 French broiler farms. Comparative genomics, genome-wide association studies, and the measured susceptibility to serum, biofilm-forming capacity, and adhesion to chicken type II collagen were used to identify features associated with clinical isolates. We found that none of the tested phenotypes could discriminate the origin of the isolates or the phylogenetic group. Instead, we found that most clinical isolates are grouped phylogenetically, and our analyses selected six genes that discriminate 94% of isolates associated with disease from those that are not. Analysis of the resistome and the mobilome revealed that multidrug-resistant clones of E. cecorum cluster into a few clades and that integrative conjugative elements and genomic islands are the main carriers of antimicrobial resistance. This comprehensive genomic analysis shows that disease-associated clones of E. cecorum belong mainly to one phylogenetic clade. IMPORTANCE Enterococcus cecorum is an important pathogen of poultry worldwide. It causes a number of locomotor disorders and septicemia, particularly in fast-growing broilers. Animal suffering, antimicrobial use, and associated economic losses require a better understanding of disease-associated E. cecorum isolates. To address this need, we performed whole-genome sequencing and analysis of a large collection of isolates responsible for outbreaks in France. By providing the first data set on the genetic diversity and resistome of E. cecorum strains circulating in France, we pinpoint an epidemic lineage that is probably also circulating elsewhere that should be targeted preferentially by preventive strategies in order to reduce the burden of E. cecorum-related diseases.


Asunto(s)
Antiinfecciosos , Enfermedades de las Aves de Corral , Animales , Aves de Corral , Pollos , Estudio de Asociación del Genoma Completo , Filogenia
17.
Phys Rev E ; 106(6-2): 065002, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36671082

RESUMEN

Thin elastic two-dimensional systems under compressive stresses may relieve part of their stretching energy by developing out-of-plane undulations. We investigate experimentally and theoretically the indentation of an elastic disk supported by a circular ring and show that compressive stresses are relieved via two different routes: either developing buckles which are spread over the system or developing a d-cone where deformation is concentrated in a subregion of the system. We characterize the indentation threshold for wrinkles or d-cone existence as a function of aspect ratio.


Asunto(s)
Elasticidad , Presión
18.
Elife ; 112022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35699414

RESUMEN

Biofilms are spatially organized communities of microorganisms embedded in a self-produced organic matrix, conferring to the population emerging properties such as an increased tolerance to the action of antimicrobials. It was shown that some bacilli were able to swim in the exogenous matrix of pathogenic biofilms and to counterbalance these properties. Swimming bacteria can deliver antimicrobial agents in situ, or potentiate the activity of antimicrobial by creating a transient vascularization network in the matrix. Hence, characterizing swimmer trajectories in the biofilm matrix is of particular interest to understand and optimize this new biocontrol strategy in particular, but also more generally to decipher ecological drivers of population spatial structure in natural biofilms ecosystems. In this study, a new methodology is developed to analyze time-lapse confocal laser scanning images to describe and compare the swimming trajectories of bacilli swimmers populations and their adaptations to the biofilm structure. The method is based on the inference of a kinetic model of swimmer populations including mechanistic interactions with the host biofilm. After validation on synthetic data, the methodology is implemented on images of three different species of motile bacillus species swimming in a Staphylococcus aureus biofilm. The fitted model allows to stratify the swimmer populations by their swimming behavior and provides insights into the mechanisms deployed by the micro-swimmers to adapt their swimming traits to the biofilm matrix.


Anyone who has ever cleaned a bathroom probably faced biofilms, the dark, slimy deposits that lurk around taps and pipes. These structures are created by bacteria which abandon their solitary lifestyle to work together as a community, secreting various substances that allow the cells to organise themselves in 3D and to better resist external aggression. Unwanted biofilms can impair industrial operations or endanger health, for example when they form inside medical equipment or water supplies. Removing these structures usually involves massive application of substances which can cause long-term damage to the environment. Recently, researchers have observed that a range of small rod-shaped bacteria ­ or 'bacilli' ­ can penetrate a harmful biofilm and dig transient tunnels in its 3D structure. These 'swimmers' can enhance the penetration of anti-microbial agents, or could even be modified to deliver these molecules right inside the biofilm. However, little is known about how the various types of bacilli, which have very different shapes and propelling systems, can navigate the complex environment that is a biofilm. This knowledge would be essential for scientists to select which swimmers could be the best to harness for industrial and medical applications. To investigate this question, Ravel et al. established a way to track how three species of bacilli swim inside a biofilm compared to in a simple fluid. A mathematical model was created which integrated several swimming behaviors such as speed adaptation and direction changes in response to the structure and density of the biofilm. This modelling was then fitted on microscopy images of the different species navigating the two types of environments. Different motion patterns for the three bacilli emerged, each showing different degrees of adapting to moving inside a biofilm. One species, in particular, was able to run straight in and out of this environment because it could adapt its speed to the biofilm density as well as randomly change direction. The new method developed by Ravel et al. can be redeployed to systematically study swimmer candidates in different types of biofilms. This would allow scientists to examine how various swimming characteristics impact how bacteria-killing chemicals can penetrate the altered biofilms. In addition, as the mathematical model can predict trajectories, it could be used in computational studies to examine which species of bacilli would be best suited in industrial settings.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Natación , Bacterias , Biopelículas , Ecosistema , Microscopía Confocal , Imagen de Lapso de Tiempo
19.
Microorganisms ; 10(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36557727

RESUMEN

Brochothrix thermosphacta is considered as a major spoiler of meat and seafood products. This study explores the biofilm formation ability and the biofilm structural diversity of 30 multi-origin B. thermosphacta strains using a set of complementary biofilm assays (biofilm ring test, crystal violet staining, and confocal laser scanning microscopy). Two major groups corresponding to low and high biofilm producers were identified. High biofilm producers presented flat architectures characterized by high surface coverage, high cell biovolume, and high surface area.

20.
Biofilm ; 4: 100065, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35024609

RESUMEN

Bacillus subtilis is a widely used bacterial model to decipher biofilm formation, genetic determinants and their regulation. For several years, studies were conducted on colonies or pellicles formed at the interface with air, but more recent works showed that non-domesticated strains were able to form thick and structured biofilms on submerged surfaces. Taking advantage of time-lapse confocal laser scanning microscopy, we monitored bacterial colonization on the surface and observed an unexpected biphasic submerged biofilm development. Cells adhering to the surface firstly form elongated chains before being suddenly fragmented and released as free motile cells in the medium. This switching coincided with an oxygen depletion in the well which preceded the formation of the pellicle at the liquid-air interface. Residual bacteria still associated with the solid surface at the bottom of the well started to express matrix genes under anaerobic metabolism to build the typical biofilm protruding structures.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda