RESUMEN
Oral-facial-digital syndromes (OFDS) gather rare genetic disorders characterised by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFDS subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in the OFD1 gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has been greatly helped by the recent development of whole-exome sequencing (WES). Here, we present all our published and unpublished results for WES in 24 cases with OFDS. We identified causal variants in five new genes (C2CD3, TMEM107, INTU, KIAA0753 and IFT57) and related the clinical spectrum of four genes in other ciliopathies (C5orf42, TMEM138, TMEM231 and WDPCP) to OFDS. Mutations were also detected in two genes previously implicated in OFDS. Functional studies revealed the involvement of centriole elongation, transition zone and intraflagellar transport defects in OFDS, thus characterising three ciliary protein modules: the complex KIAA0753-FOPNL-OFD1, a regulator of centriole elongation; the Meckel-Gruber syndrome module, a major component of the transition zone; and the CPLANE complex necessary for IFT-A assembly. OFDS now appear to be a distinct subgroup of ciliopathies with wide heterogeneity, which makes the initial classification obsolete. A clinical classification restricted to the three frequent/well-delineated subtypes could be proposed, and for patients who do not fit one of these three main subtypes, a further classification could be based on the genotype.
Asunto(s)
Cara/anomalías , Síndromes Orofaciodigitales/genética , Anomalías Múltiples/genética , Trastornos de la Motilidad Ciliar/genética , Encefalocele/genética , Femenino , Heterocigoto , Humanos , Masculino , Mutación/genética , Enfermedades Renales Poliquísticas/genética , Proteínas/genética , Retinitis PigmentosaRESUMEN
Non-syndromic arthrogryposis multiplex congenita (AMC) is characterized by multiple congenital contractures resulting from reduced fetal mobility. Genetic mapping and whole exome sequencing (WES) were performed in 31 multiplex and/or consanguineous undiagnosed AMC families. Although this approach identified known AMC genes, we here report pathogenic mutations in two new genes. Homozygous frameshift mutations in CNTNAP1 were found in four unrelated families. Patients showed a marked reduction in motor nerve conduction velocity (<10 m/s) and transmission electron microscopy (TEM) of sciatic nerve in the index cases revealed severe abnormalities of both nodes of Ranvier width and myelinated axons. CNTNAP1 encodes CASPR, an essential component of node of Ranvier domains which underlies saltatory conduction of action potentials along the myelinated axons, an important process for neuronal function. A homozygous missense mutation in adenylate cyclase 6 gene (ADCY6) was found in another family characterized by a lack of myelin in the peripheral nervous system (PNS) as determined by TEM. Morpholino knockdown of the zebrafish orthologs led to severe and specific defects in peripheral myelin in spite of the presence of Schwann cells. ADCY6 encodes a protein that belongs to the adenylate cyclase family responsible for the synthesis of cAMP. Elevation of cAMP can mimic axonal contact in vitro and upregulates myelinating signals. Our data indicate an essential and so far unknown role of ADCY6 in PNS myelination likely through the cAMP pathway. Mutations of genes encoding proteins of Ranvier domains or involved in myelination of Schwann cells are responsible for novel and severe human axoglial diseases.
Asunto(s)
Adenilil Ciclasas/genética , Artrogriposis/genética , Artrogriposis/patología , Moléculas de Adhesión Celular Neuronal/genética , Axones/patología , Axones/ultraestructura , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Microscopía Electrónica de Transmisión , Mutación/genética , Vaina de Mielina/patología , Sistema Nervioso Periférico/patología , Sistema Nervioso Periférico/ultraestructura , Embarazo , Células de Schwann/metabolismoRESUMEN
Oral-facial-digital syndrome type VI (OFD VI) is characterized by the association of malformations of the face, oral cavity and extremities, distinguished from the 12 other OFD syndromes by cerebellar and metacarpal abnormalities. Cerebellar malformations in OFD VI have been described as a molar tooth sign (MTS), thus, including OFD VI among the "Joubert syndrome related disorders" (JSRD). OFD VI diagnostic criteria have recently been suggested: MTS and one or more of the following: 1) tongue hamartoma(s) and/or additional frenula and/or upper lip notch; 2) mesoaxial polydactyly of hands or feet; 3) hypothalamic hamartoma. In order to further delineate this rare entity, we present the neurological and radiological data of 6 additional OFD VI patients. All patients presented oral malformations, facial dysmorphism and distal abnormalities including frequent polydactyly (66%), as well as neurological symptoms with moderate to severe mental retardation. Contrary to historically reported patients, mesoaxial polydactyly did not appear to be a predominant clinical feature in OFD VI. Sequencing analyzes of the 14 genes implicated in JSRD up to 2011 revealed only an OFD1 frameshift mutation in one female OFD VI patient, strengthening the link between these two oral-facial-digital syndromes and JSRD.