Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Inorg Chem ; 50(12): 5671-8, 2011 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-21545091

RESUMEN

A new generation UV absorber is obtained by microwave-heating-assisted hydrothermal synthesis: [Hgua](2)·(Ti(5)O(5)F(12)). The structure of this hybrid titanium(IV) oxyfluoride is ab initio determined from powder X-ray data by combining a direct space method, Rietveld refinement [orthorhombic, Cmm2, a = 22.410(1) Å, b = 11.191(1) Å, c = 3.802(1) Å], and density functional theory geometry optimization. The three-dimensional network is built up from infinite inorganic layers (∞)(Ti(5)O(5)F(12)) separated by guanidinium cations. The theoretical optical gap (3.2 eV) estimated from density of state calculations is in good agreement with the experimental gap (3.3 eV) obtained by UV-vis diffuse reflectivity. The optical absorption is mainly due to O(2p) → Ti(3d) and F(2p) → Ti(3d) transitions at higher energies. The refraction index is low in the visible range (n ≈ 1.9) compared to that of TiO(2) and, consequently, [Hgua](2)·(Ti(5)O(5)F(12)) shows a good transparency adapted to UV shielding. Under UV irradiation at 254 nm for 40 h, the white microcrystalline powder turns to light purple-gray. This color change is caused by the reduction of Ti(IV) to Ti(III), confirmed by magnetic measurements.

2.
Ultramicroscopy ; 149: 1-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25464154

RESUMEN

Because of the large energy separation between O-K and Mo-L2,3 edges, extracting precise and reliable chemical information from core-loss EELS analyze of molybdenum oxides has always been a challenge. In this regard Mo-M2,3 edges represents an interesting alternative as they are situated close to the O-K edges. They should allow thus the extraction of a wealth of chemical information from the same spectra. However the main difficulty to overcome in order to work properly with these edges is the delayed maxima of the Mo-M4,5 edges which hinders the automated background subtraction with the usual inverse power low function. In this study we propose another background subtraction method specifically designed to overcome this obstacle and we apply it to the study of MoO3 and MoO2. We are able to show that quantitative chemical information can be precisely and accurately determined from the joined analyze of O-K and Mo-M2,3 edges. In particular k-factors are derived as a function of the integration window width and standard errors close to 2% are reported. The possibility to discriminate the two oxides thanks to chemical shifts and energy-loss near-edge structures is also investigated and discussed. Furthermore the M3/M2 ratios are derived and are found to be strongly dependent on the local chemical environment. This result is confirmed by multiplet calculations for which the crystal field parameters have been determined by ab initio calculations. The whole methodology as well as the conclusions presented in this paper should be easily transposable to any transitions metal oxides of the 4d family. This work should open a new and easier way regarding the quantitative EELS analyses of these compounds.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda