Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Biomacromolecules ; 24(7): 2982-2997, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37002864

RESUMEN

Alginate-based hydrogels are a promising class of biomaterials due to their usability, biocompatibility, and high water-binding capacity which is the reason for their broad use in biofabrication. One challenge of these biomaterials is, however, the lack of cell adhesion motifs. This drawback can be overcome by oxidizing alginate to alginate dialdehyde (ADA) and by subsequent cross-linking with gelatin (GEL) to fabricate ADA-GEL hydrogels, which offer improved cell-material interactions. The present work investigates four pharmaceutical grade alginates of different algae sources and their respective oxidized forms regarding their molecular weight and M/G ratio using 1H NMR spectroscopy and gel permeation chromatography. In addition, three different methods for determining the degree of oxidation (% DO) of ADA, including iodometric, spectroscopic, and titration methods, are applied and compared. Furthermore, the aforementioned properties are correlated with the resulting viscosity, degradation behavior, and cell-material interactions to predict the material behavior in vitro and thus choose a suitable alginate for an intended application in biofabrication. In the framework of the present work, easy and practicable detection methods for the investigations of alginate-based bioinks were summarized and shown. In this regard, the success of oxidation of alginate was confirmed by the three aforementioned methods and was further proven by solid-state 13C NMR, for the first time in the literature, that only guluronic acid (G) was attacked during the oxidation, leading to the formation of hemiacetals. Furthermore, it was shown that ADA-GEL hydrogels of alginates with longer G-blocks are more suitable for long-term experiments due to their stability over an incubation period of 21 days, while ADA-GEL hydrogels of alginates with longer mannuronic acid (M)-blocks are more suitable for short-term applications such as sacrificial inks due to their extensive swelling and subsequent loss of shape. Finally, it was proven that the M/G ratio did not show any influence on the biocompatibility or printability of the investigated alginate-based hydrogels. The physicochemical findings provide an alginate library for tailored application in biofabrication.


Asunto(s)
Alginatos , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Alginatos/química , Ácido Glucurónico/química , Materiales Biocompatibles , Hidrogeles/química , Gelatina/química
2.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563143

RESUMEN

The use of organic-inorganic 3D printed composites with enhanced properties in biomedical applications continues to increase. The present study focuses on the development of 3D printed alginate-based composites incorporating inorganic fillers with different shapes (angular and round), for bone regeneration. Reactive fillers (bioactive glass 13-93 and hydroxyapatite) and non-reactive fillers (inert soda-lime glass) were investigated. Rheological studies and the characterization of various extrusion-based parameters, including material throughput, printability, shape fidelity and filament fusion, were carried out to identify the parameters dominating the printing process. It was shown that the effective surface area of the filler particle has the highest impact on the printing behavior, while the filler reactivity presents a side aspect. Composites with angular particle morphologies showed the same high resolution during the printing process, almost independent from their reactivity, while composites with comparable amounts of round filler particles lacked stackability after printing. Further, it could be shown that a higher effective surface area of the particles can circumvent the need for a higher filler content for obtaining convincing printing results. In addition, it was proven that, by changing the particle shape, the critical filler content for the obtained adequate printability can be altered. Preliminary in vitro biocompatibility investigations were carried out with the bioactive glass containing ink. The 3D printed ink, forming an interconnected porous scaffold, was analyzed regarding its biocompatibility in direct or indirect contact with the pre-osteoblast cell line MC3T3-E1. Both kinds of cell tests showed increased viability and a high rate of proliferation, with complete coverage of the 3D scaffolds' surface already after 7 d post cell-seeding.


Asunto(s)
Alginatos , Bioimpresión , Bioimpresión/métodos , Regeneración Ósea , Hidrogeles , Impresión Tridimensional , Andamios del Tejido
3.
Biomacromolecules ; 22(7): 3017-3027, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34100282

RESUMEN

Hydrogels are key components in several biomedical research areas such as drug delivery, tissue engineering, and biofabrication. Here, a novel ABA-type triblock copolymer comprising poly(2-methyl-2-oxazoline) as the hydrophilic A blocks and poly(2-phenethyl-2-oxazoline) as the aromatic and hydrophobic B block is introduced. Above the critical micelle concentration, the polymer self-assembles into small spherical polymer micelles with a hydrodynamic radius of approx 8-8.5 nm. Interestingly, this specific combination of hydrophilic and hydrophobic aromatic moieties leads to rapid thermoresponsive inverse gelation at polymer concentrations above a critical gelation concentration (20 wt %) into a macroporous hydrogel of densely packed micelles. This hydrogel exhibited pronounced viscoelastic solid-like properties, as well as extensive shear-thinning, rapid structure recovery, and good strain resistance properties. Excellent 3D-printability of the hydrogel at lower temperature opens a wide range of different applications, for example, in the field of biofabrication. In preliminary bioprinting experiments using NIH 3T3 cells, excellent cell viabilities of more than 95% were achieved. The particularly interesting feature of this novel material is that it can be used as a printing support in hybrid bioink systems and sacrificial bioink due to rapid dissolution at physiological conditions.


Asunto(s)
Bioimpresión , Animales , Hidrogeles , Ratones , Oxazoles , Impresión Tridimensional , Ingeniería de Tejidos
4.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652991

RESUMEN

A hydrogel system based on oxidized alginate covalently crosslinked with gelatin (ADA-GEL) has been utilized for different biofabrication approaches to design constructs, in which cell growth, proliferation and migration have been observed. However, cell-bioink interactions are not completely understood and the potential effects of free aldehyde groups on the living cells have not been investigated. In this study, alginate, ADA and ADA-GEL were characterized via FTIR and NMR, and their effect on cell viability was investigated. In the tested cell lines, there was a concentration-dependent effect of oxidation degree on cell viability, with the strongest cytotoxicity observed after 72 h of culture. Subsequently, primary human cells, namely fibroblasts and endothelial cells (ECs) were grown in ADA and ADA-GEL hydrogels to investigate the molecular effects of oxidized material. In ADA, an extremely strong ROS generation resulting in a rapid depletion of cellular thiols was observed in ECs, leading to rapid necrotic cell death. In contrast, less pronounced cytotoxic effects of ADA were noted on human fibroblasts. Human fibroblasts had higher cellular thiol content than primary ECs and entered apoptosis under strong oxidative stress. The presence of gelatin in the hydrogel improved the primary cell survival, likely by reducing the oxidative stress via binding to the CHO groups. Consequently, ADA-GEL was better tolerated than ADA alone. Fibroblasts were able to survive the oxidative stress in ADA-GEL and re-entered the proliferative phase. To the best of our knowledge, this is the first report that shows in detail the relationship between oxidative stress-induced intracellular processes and alginate di-aldehyde-based bioinks.


Asunto(s)
Alginatos/química , Materiales Biocompatibles/química , Células Endoteliales/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Gelatina/química , Estrés Oxidativo/efectos de los fármacos , Alginatos/toxicidad , Animales , Materiales Biocompatibles/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/citología , Fibroblastos/citología , Gelatina/toxicidad , Humanos , Ratones , Células 3T3 NIH , Andamios del Tejido/química
5.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921909

RESUMEN

In this study, as a measure to enhance the antimicrobial activity of biomaterials, the selenium ions have been substituted into hydroxyapatite (HA) at different concentration levels. To balance the potential cytotoxic effects of selenite ions (SeO32-) in HA, strontium (Sr2+) was co-substituted at the same concentration. Selenium and strontium-substituted hydroxyapatites (Se-Sr-HA) at equal molar ratios of x Se/(Se + P) and x Sr/(Sr + Ca) at (x = 0, 0.01, 0.03, 0.05, 0.1, and 0.2) were synthesized via the wet precipitation route and sintered at 900 °C. The effect of the two-ion concentration on morphology, surface charge, composition, antibacterial ability, and cell viability were studied. X-ray diffraction verified the phase purity and confirmed the substitution of selenium and strontium ions. Acellular in vitro bioactivity tests revealed that Se-Sr-HA was highly bioactive compared to pure HA. Se-Sr-HA samples showed excellent antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus carnosus) bacterial strains. In vitro cell-material interaction, using human osteosarcoma cells MG-63 studied by WST-8 assay, showed that Se-HA has a cytotoxic effect; however, the co-substitution of strontium in Se-HA offsets the negative impact of selenium and enhanced the biological properties of HA. Hence, the prepared samples are a suitable choice for antibacterial coatings and bone filler applications.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Hidroxiapatitas/química , Selenio/química , Estroncio/química , Antibacterianos/efectos adversos , Antibacterianos/química , Supervivencia Celular/efectos de los fármacos , Staphylococcus/efectos de los fármacos
6.
Langmuir ; 36(7): 1793-1803, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32017853

RESUMEN

The surface structure of biomaterials is of key importance to control its interactions with biological environments. Industrial fabrication and coating processes often introduce particulate nanostructures at implant surfaces. Understanding the cellular interaction with particle-based surface topologies and feature sizes in the colloidal length scale therefore offers the possibility to improve the biological response of synthetic biomaterials. Here, surfaces with controlled topography and regular feature sizes covering the relevant length scale of particulate coatings (100-1000 nm) are fabricated by colloidal templating. Using fluorescent microscopy, WST assay, and morphology analysis, results show that adhesion and attachment of bone-marrow derived murine stromal cells (ST2) are strongly influenced by the surface feature size while geometric details play an insignificant role. Quantitative analysis shows enhanced cell adhesion, spreading, viability, and activity when surface feature size decreases below 200 nm compared to flat surfaces, while larger feature sizes are detrimental to cell adhesion. Kinetic studies reveal that most cells on surfaces with larger features lose contact with the substrate over time. This study identifies colloidal templating as a simple method for creating highly defined model systems to investigate complex cell functions and provides design criteria for the choice of particulate coatings on commercial implant materials.


Asunto(s)
Huesos/citología , Materiales Biocompatibles Revestidos/química , Coloides/química , Células Madre Mesenquimatosas/metabolismo , Animales , Huesos/metabolismo , Adhesión Celular , Membranas Artificiales , Ratones , Propiedades de Superficie , Ingeniería de Tejidos/métodos
7.
FASEB J ; 32(10): 5587-5601, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29746168

RESUMEN

Endothelial progenitor cells (EPCs) contribute to neovascularization in tumors. However, the relationship of EPCs and tumor-induced angiogenesis still remains to be clarified. The present study aimed at investigating the influence of 4 different tumor types on angiogenic properties of EPCs in an in vitro and in vivo rat model. It could be demonstrated that in vitro proliferation, migration, and angiogenic abilities and genetic modifications of EPCs are controlled in a tumor-type-dependent manner. The proangiogenic effect of mammary carcinoma, osteosarcoma, and rhabdomyosarcoma cells was more pronounced compared to colon carcinoma cells. Coinjection of encapsulated tumor cells, especially mammary carcinoma cells, and EPCs in a rat model confirmed a contributing effect of EPCs in tumor vascularization. Cytokines secreted by tumors such as monocyte chemoattractant protein 1, macrophage inflammatory protein 2, and TNF-related apoptosis-inducing ligand play a pivotal role in the tumor cell-EPC interaction, leading to enhanced migration and angiogenesis. With the present study, we were able to decipher possible underlying mechanisms by which EPCs are stimulated by tumor cells and contribute to tumor vascularization. The present study will contribute to a better understanding of tumor-induced vascularization, thus facilitating the development of therapeutic strategies targeting tumor-EPC interactions.-An, R., Schmid, R., Klausing, A., Robering, J. W., Weber, M., Bäuerle, T., Detsch, R., Boccaccini, A. R., Horch, R. E., Boos, A. M., Weigand, A. Proangiogenic effects of tumor cells on endothelial progenitor cells vary with tumor type in an in vitro and in vivo rat model.


Asunto(s)
Comunicación Celular , Células Progenitoras Endoteliales/metabolismo , Neoplasias Experimentales/metabolismo , Neovascularización Patológica/metabolismo , Animales , Línea Celular Tumoral , Citocinas/metabolismo , Células Progenitoras Endoteliales/patología , Masculino , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/patología , Neovascularización Patológica/patología , Ratas
8.
Langmuir ; 34(5): 2063-2072, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29308903

RESUMEN

We investigate the formation of spherical supraparticles with controlled and tunable porosity on the nanometer and micrometer scales using the self-organization of a binary mixture of small (nanometer scale) oxidic particles with large (micrometer scale) polystyrene particles in the confinement of an emulsion droplet. The external confinement determines the final, spherical structure of the hybrid assembly, while the small particles form the matrix material. The large particles act as templating porogens to create micropores after combustion at elevated temperatures. We control the pore sizes on the micrometer scale by varying the size of the coassembled polystyrene microspheres and produce supraparticles from both silica- and calcium-containing CaO/SiO2 particles. Although porous supraparticles are obtained in both cases, we found that the presence of calcium ions substantially complicated the fabrication process since the increased ionic strength of the dispersion compromises the colloidal stability during the assembly process. We minimized these stability issues via the addition of a steric stabilizing agent and by mixing bioactive and silica colloidal particles. We investigated the interaction of the porous particles with bone marrow stromal cells and found an increase in cell attachment with increasing pore size of the self-assembled supraparticles.

9.
J Mater Sci Mater Med ; 29(12): 185, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30519790

RESUMEN

Microcapsules based on alginate-keratin, alginate dialdehyde (ADA)-keratin and ADA-keratin-45S5 bioactive glass (BG) were successfully prepared. The samples were characterized by light microscopy, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results showed that ADA-based materials possess higher degradation rate compared to alginate-based materials. The incorporation of BG particles (mean particle size: 2.0 µm) improved the bioactivity of the materials. Moreover, the biological properties of the samples were evaluated by encapsulating MG-63 osteosarcoma cells into the microcapsules. The cell viability in all samples increased during 21 days of cultivation. However, the presence of 0.5% BG particle seemed to have initial negative effect on cell growth compared to other samples without BG. On the other hand, the positive effect of CaP formation was visible after 3 weeks in the BG containing samples. The results are relevant to consider the development of cell laden bioinks incorporating inorganic bioactive particles for biofabrication approaches.


Asunto(s)
Alginatos/química , Cerámica/química , Vidrio/química , Queratinas/química , Ingeniería de Tejidos , Materiales Biocompatibles/química , Cápsulas , Línea Celular , Supervivencia Celular , Humanos , Ensayo de Materiales , Propiedades de Superficie
10.
J Mater Sci Mater Med ; 26(6): 199, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26109452

RESUMEN

Multi-walled carbon nanotube (MWCNT)-Bioglass (BG) matrix composite was fabricated using a facile and scalable aqueous colloidal processing method without using any surfactants followed by spark plasma sintering (SPS) consolidation. The individual MWCNTs were initially uniformly dispersed in water and then entirely immobilized on the BG particles during the colloidal processing, avoiding their common re-agglomeration during the water-removal and drying step, which guaranteed their uniform dispersion within the dense BG matrix after the consolidation process. SPS was used as a fast sintering technique to minimise any damage to the MWCNT structure during the high-temperature consolidation process. The electrical conductivity of BG increased by 8 orders of magnitude with the addition of 6.35 wt% of MWCNTs compared to pure BG. Short-duration tests were used in the present study as a preliminary evaluation to understand the effect of incorporating MWCNTs on osteoblast-like cells. The analysed cell proliferation, viability and phenotype expression of MG-63 cells showed inhibition on 45S5 Bioglass(®)-MWCNT composite surfaces.


Asunto(s)
Cerámica/química , Vidrio/química , Nanotubos de Carbono/química , Materiales Biocompatibles/química , Línea Celular , Proliferación Celular , Supervivencia Celular , Coloides , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Nanocompuestos/química , Nanocompuestos/ultraestructura , Nanotubos de Carbono/ultraestructura , Osteoblastos/citología , Propiedades de Superficie , Ingeniería de Tejidos , Andamios del Tejido/química
11.
Nanomaterials (Basel) ; 14(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38334550

RESUMEN

A biodegradable amorphous carbonated calcium phosphate (caCP)-incorporated polycaprolactone (PCL) composite layer was successfully deposited by a spin coater. In this specific coating, the PCL acts as a bioadhesive, since it provides a better adherence of the coatings to the substrate compared to powder coatings. The caCP-PCL coatings were deposited and formed thin layers on the surface of a Si3N4-3 wt% MWCNT (multiwalled carbon nanotube) substrate, which is an emerging type of implant material in the biomedical field. The composite coatings were examined regarding their morphology, structure and biological performance. The biocompatibility of the samples was tested in vitro with MC3T3-E1 preosteoblast cells. Owing to the caCP-PCL thin layer, the cell viability values were considerably increased compared to the substrate material. The ALP and LDH tests showed numerous living cells on the investrigated coatings. The morphology of the MC3T3-E1 cells was examined by fluorescent staining (calcein and DAPI) and scanning electron microscopy, both of which revealed a well-spread, adhered and confluent monolayer of cells. All performed biocompatibility tests were positive and indicated the applicability of the deposited thin composite layers as possible candidates for orthopaedic implants for an extended period.

12.
ACS Appl Mater Interfaces ; 16(20): 25652-25664, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739871

RESUMEN

Aqueous core-shell structures can serve as an efficient approach that allows cells to generate 3D spheroids with in vivo-like cell-to-cell contacts. Here, a novel strategy for fabricating liquid-core-shell capsules is proposed by inverse gelation of alginate (ALG) and layer-by-layer (LbL) coating. We hypothesized that the unique properties of polyethylenimine (PEI) could be utilized to overcome the low structural stability and the limited cell recognition motifs of ALG. In the next step, alginate dialdehyde (ADA) enabled the Schiff-base reaction with free amine groups of PEI to reduce its possible toxic effects. Scanning electron microscopy and light microscopy images proved the formation of spherical hollow capsules with outer diameters of 3.0 ± 0.1 mm for ALG, 3.2 ± 0.1 mm for ALG/PEI, and 4.0 ± 0.2 mm for ALG/PEI/ADA capsules. The effective modulus increased by 3-fold and 5-fold when comparing ALG/PEI/ADA and ALG/PEI to ALG capsules, respectively. Moreover, PEI-coated capsules showed potential antibacterial properties against both Staphylococcus aureus and Escherichia coli, with an apparent inhibition zone. The cell viability results showed that all capsules were cytocompatible (above 75.5%). Cells could proliferate and form spheroids when encapsulated within the ALG/PEI/ADA capsules. Monitoring the spheroid thickness over 5 days of incubation indicated an increasing trend from 39.50 µm after 1 day to 66.86 µm after 5 days. The proposed encapsulation protocol represents a new in vitro platform for developing 3D cell cultivation and can be adapted to fulfill the requirements of various biomedical applications.


Asunto(s)
Alginatos , Antibacterianos , Cápsulas , Escherichia coli , Polietileneimina , Staphylococcus aureus , Alginatos/química , Polietileneimina/química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Cápsulas/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Supervivencia Celular/efectos de los fármacos , Animales
13.
Biomater Adv ; 162: 213922, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38878645

RESUMEN

Mesoporous silica nanoparticles were synthesized using a microemulsion-assisted sol-gel method, and calcium, gallium or a combination of both, were used as dopants. The influence of these metallic ions on the physicochemical properties of the nanoparticles was investigated by scanning and transmission electron microscopy, as well as N2 adsorption-desorption methods. The presence of calcium had a significant impact on the morphology and textural features of the nanoparticles. The addition of calcium increased the average diameter of the nanoparticles from 80 nm to 150 nm, while decreasing their specific surface area from 972 m2/g to 344 m2/g. The nanoparticles of all compositions were spheroidal, with a disordered mesoporous structure. An ion release study in cell culture medium demonstrated that gallium was released from the nanoparticles in a sustained manner. In direct contact with concentrations of up to 100 µg/mL of the nanoparticles, gallium-containing nanoparticles did not exhibit cytotoxicity towards pre-osteoblast MC3T3-E1 cells. Moreover, in vitro cell culture tests revealed that the addition of gallium to the nanoparticles enhanced osteogenic activity. Simultaneously, the nanoparticles disrupted the osteoclast differentiation of RAW 264.7 macrophage cells. These findings suggest that gallium-containing nanoparticles possess favorable physicochemical properties and biological characteristics, making them promising candidates for applications in bone tissue regeneration, particularly for unphysiological or pathological conditions such as osteoporosis.


Asunto(s)
Galio , Nanopartículas , Osteoclastos , Osteogénesis , Galio/química , Galio/farmacología , Animales , Ratones , Osteoclastos/efectos de los fármacos , Nanopartículas/química , Osteogénesis/efectos de los fármacos , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Células RAW 264.7 , Porosidad , Diferenciación Celular/efectos de los fármacos
14.
RSC Adv ; 14(20): 13769-13786, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38681843

RESUMEN

Alginate (ALG) and its oxidised form alginate-dialdehyde (ADA) are highly attractive materials for hydrogels used in 3D bioprinting as well as drop-on-demand (DoD) approaches. However, both polymers need to be modified using cell-adhesive peptide sequences, to obtain bioinks exhibiting promising cell-material interactions. Our study explores the modification of ALG- and ADA-based bioinks with the adhesive peptides YIGSR (derived from laminin), RRETEWA (derived from fibronectin) and IKVAV (derived from laminin) for 3D bioprinting. Two coupling methods, carbodiimide and Schiff base reactions, were employed to modify the polymers with peptides. Analytical techniques, including FTIR and NMR were used to assess the chemical composition, revealing challenges in confirming the presence of peptides. The modified bioinks exhibited decreased stability, viscosity, and stiffness, particularly-ADA-based bioinks in contrast to ALG. Sterile hydrogel capsules or droplets were produced using a manual manufacturing process and DoD printing. NIH/3T3 cell spreading analysis showed enhanced cell spreading in carbodiimide-modified ADA, Schiff base-modified ADA, and PEG-Mal-modified ADA. The carbodiimide coupling of peptides worked for ADA, however the same was not observed for ALG. Finally, a novel mixture of all used peptides was evaluated regarding synergistic effects on cell spreading which was found to be effective, showing higher aspect ratios compared to the single peptide coupled hydrogels in all cases. The study suggests potential applications of these modified bioinks in 3D bioprinting approaches and highlights the importance of peptide selection as well as their combination for improved cell-material interactions.

15.
J Biomed Mater Res A ; 112(7): 1124-1137, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38433700

RESUMEN

This work presents the effect of the silicocarnotite (SC) and nagelschmidtite (Nagel) phases on in vitro osteogenesis. The known hydroxyapatite of biological origin (BHAp) was used as a standard of osteoconductive characteristics. The evaluation was carried out in conventional and osteogenic media for comparative purposes to assess the osteogenic ability of the bioceramics. First, the effect of the material on cell viability at 24 h, 7 and 14 days of incubation was evaluated. In addition, cell morphology and attachment on dense bioceramic surfaces were observed by fluorescence microscopy. Specifically, alkaline phosphatase (ALP) activity was evaluated as an osteogenic marker of the early stages of bone cell differentiation. Mineralized extracellular matrix was observed by calcium phosphate deposits and extracellular vesicle formation. Furthermore, cell phenotype determination was confirmed by scanning electron microscope. The results provided relevant information on the cell attachment, proliferation, and osteogenic differentiation processes after 7 and 14 days of incubation. Finally, it was demonstrated that SC and Nagel phases promote cell proliferation and differentiation, while the Nagel phase exhibited a superior osteoconductive behavior and could promote MC3T3-E1 cell differentiation to a higher extent than SC and BHAp, which was reflected in a higher number of deposits in a shorter period for both conventional and osteogenic media.


Asunto(s)
Diferenciación Celular , Cerámica , Durapatita , Osteoblastos , Osteogénesis , Silicatos , Animales , Ratones , Durapatita/química , Durapatita/farmacología , Cerámica/química , Cerámica/farmacología , Osteoblastos/citología , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , Silicatos/química , Silicatos/farmacología , Diferenciación Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Materiales Biocompatibles/química , Fosfatasa Alcalina/metabolismo , Compuestos de Calcio/farmacología , Compuestos de Calcio/química , Supervivencia Celular/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Matriz Extracelular/metabolismo , Células 3T3 , Línea Celular
16.
J Cell Mol Med ; 17(10): 1197-206, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24118692

RESUMEN

Tissue engineering (TE) has evoked new hopes for the cure of organ failure and tissue loss by creating functional substitutes in the laboratory. Besides various innovations in the context of Regenerative Medicine (RM), TE also provided new technology platforms to study mechanisms of angiogenesis and tumour cell growth as well as potentially tumour cell spreading in cancer research. Recent advances in stem cell technology--including embryonic and adult stem cells and induced pluripotent stem cells--clearly show the need to better understand all relevant mechanisms to control cell growth when such techniques will be administered to patients. Such TE-Cancer research models allow us to investigate the interactions that occur when replicating physiological and pathological conditions during the initial phases of replication, morphogenesis, differentiation and growth under variable given conditions. Tissue microenvironment has been extensively studied in many areas of TE and it plays a crucial role in cell signalling and regulation of normal and malignant cell functions. This article is intended to give an overview on some of the most recent developments and possible applications of TE and RM methods with regard to the improvement of cancer research with TE platforms. The synthesis of TE with innovative methods of molecular biology and stem-cell technology may help investigate and potentially modulate principal phenomena of tumour growth and spreading, as well as tumour-related angiogenesis. In the future, these models have the potential to investigate the optimal materials, culture conditions and material structure to propagate tumour growth.


Asunto(s)
Neoplasias/patología , Ingeniería de Tejidos , Humanos
17.
Mater Today Bio ; 21: 100719, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37529217

RESUMEN

Bone healing is a complex process orchestrated by various factors, such as mechanical, chemical and electrical cues. Creating synthetic biomaterials that combine several of these factors leading to tailored and controlled tissue regeneration, is the goal of scientists worldwide. Among those factors is piezoelectricity which creates a physiological electrical microenvironment that plays an important role in stimulating bone cells and fostering bone regeneration. However, only a limited number of studies have addressed the potential of combining piezoelectric biomaterials with state-of-the-art fabrication methods to fabricate tailored scaffolds for bone tissue engineering. Here, we present an approach that takes advantage of modern additive manufacturing techniques to create macroporous biomaterial scaffolds based on a piezoelectric and bioactive ceramic-crystallised glass composite. Using binder jetting, scaffolds made of barium titanate and 45S5 bioactive glass are fabricated and extensively characterised with respect to their physical and functional properties. The 3D-printed ceramic-crystallised glass composite scaffolds show both suitable mechanical strength and bioactive behaviour, as represented by the accumulation of bone-like calcium phosphate on the surface. Piezoelectric scaffolds that mimic or even surpass bone with piezoelectric constants ranging from 1 to 21 pC/N are achieved, depending on the composition of the composite. Using MC3T3-E1 osteoblast precursor cells, the scaffolds show high cytocompatibility coupled with cell attachment and proliferation, rendering the barium titanate/45S5 ceramic-crystallised glass composites promising candidates for bone tissue engineering.

19.
Biofabrication ; 16(1)2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37769669

RESUMEN

The outcome of three-dimensional (3D) bioprinting heavily depends, amongst others, on the interaction between the developed bioink, the printing process, and the printing equipment. However, if this interplay is ensured, bioprinting promises unmatched possibilities in the health care area. To pave the way for comparing newly developed biomaterials, clinical studies, and medical applications (i.e. printed organs, patient-specific tissues), there is a great need for standardization of manufacturing methods in order to enable technology transfers. Despite the importance of such standardization, there is currently a tremendous lack of empirical data that examines the reproducibility and robustness of production in more than one location at a time. In this work, we present data derived from a round robin test for extrusion-based 3D printing performance comprising 12 different academic laboratories throughout Germany and analyze the respective prints using automated image analysis (IA) in three independent academic groups. The fabrication of objects from polymer solutions was standardized as much as currently possible to allow studying the comparability of results from different laboratories. This study has led to the conclusion that current standardization conditions still leave room for the intervention of operators due to missing automation of the equipment. This affects significantly the reproducibility and comparability of bioprinting experiments in multiple laboratories. Nevertheless, automated IA proved to be a suitable methodology for quality assurance as three independently developed workflows achieved similar results. Moreover, the extracted data describing geometric features showed how the function of printers affects the quality of the printed object. A significant step toward standardization of the process was made as an infrastructure for distribution of material and methods, as well as for data transfer and storage was successfully established.


Asunto(s)
Bioimpresión , Humanos , Bioimpresión/métodos , Reproducibilidad de los Resultados , Andamios del Tejido/química , Materiales Biocompatibles , Impresión Tridimensional , Ingeniería de Tejidos/métodos
20.
Front Physiol ; 13: 965181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246121

RESUMEN

Biophysical stimulation by electric fields can promote bone formation in bone defects of critical size. Even though, long-term effects of alternating electric fields on the differentiation of osteoblasts are not fully understood. Human pre-osteoblasts were stimulated over 31 days to gain more information about these cellular processes. An alternating electric field with 0.7 Vrms and 20 Hz at two distances was applied and viability, mineralization, gene expression, and protein release of differentiation factors were analyzed. The viability was enhanced during the first days of stimulation. A higher electric field resulted in upregulation of typical osteogenic markers like osteoprotegerin, osteopontin, and interleukin-6, but no significant changes in mineralization. Upregulation of the osteogenic markers could be detected with a lower electric field after the first days of stimulation. As a significant increase in the mineralized matrix was identified, an enhanced osteogenesis due to low alternating electric fields can be assumed.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda