Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Bacteriol ; 193(18): 5047-8, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21868805

RESUMEN

Nitrosomonas sp. strain AL212 is an obligate chemolithotrophic ammonia-oxidizing bacterium (AOB) that was originally isolated in 1997 by Yuichi Suwa and colleagues. This organism belongs to Nitrosomonas cluster 6A, which is characterized by sensitivity to high ammonia concentrations, higher substrate affinity (lower K(m)), and lower maximum growth rates than strains in Nitrosomonas cluster 7, which includes Nitrosomonas europaea and Nitrosomonas eutropha. Genome-informed studies of this ammonia-sensitive cohort of AOB are needed, as these bacteria are found in freshwater environments, drinking water supplies, wastewater treatment systems, and soils worldwide.


Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Nitrosomonas/genética , Análisis de Secuencia de ADN , Amoníaco/metabolismo , Crecimiento Quimioautotrófico , Datos de Secuencia Molecular , Nitrosomonas/aislamiento & purificación , Nitrosomonas/metabolismo , Oxidación-Reducción , Plásmidos
2.
Stand Genomic Sci ; 9(3): 655-75, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25197452

RESUMEN

Desulfotomaculum nigrificans and D. carboxydivorans are moderately thermophilic members of the polyphyletic spore-forming genus Desulfotomaculum in the family Peptococcaceae. They are phylogenetically very closely related and belong to 'subgroup a' of the Desulfotomaculum cluster 1. D. nigrificans and D. carboxydivorans have a similar growth substrate spectrum; they can grow with glucose and fructose as electron donors in the presence of sulfate. Additionally, both species are able to ferment fructose, although fermentation of glucose is only reported for D. carboxydivorans. D. nigrificans is able to grow with 20% carbon monoxide (CO) coupled to sulfate reduction, while D. carboxydivorans can grow at 100% CO with and without sulfate. Hydrogen is produced during growth with CO by D. carboxydivorans. Here we present a summary of the features of D. nigrificans and D. carboxydivorans together with the description of the complete genome sequencing and annotation of both strains. Moreover, we compared the genomes of both strains to reveal their differences. This comparison led us to propose a reclassification of D. carboxydivorans as a later heterotypic synonym of D. nigrificans.

3.
Stand Genomic Sci ; 7(1): 31-43, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23458837

RESUMEN

Marinomonas posidonica IVIA-Po-181(T) Lucas-Elío et al. 2011 belongs to the family Oceanospirillaceae within the phylum Proteobacteria. Different species of the genus Marinomonas can be readily isolated from the seagrass Posidonia oceanica. M. posidonica is among the most abundant species of the genus detected in the cultured microbiota of P. oceanica, suggesting a close relationship with this plant, which has a great ecological value in the Mediterranean Sea, covering an estimated surface of 38,000 Km(2). Here we describe the genomic features of M. posidonica. The 3,899,940 bp long genome harbors 3,544 protein-coding genes and 107 RNA genes and is a part of the GenomicEncyclopedia ofBacteriaandArchaea project.

4.
Stand Genomic Sci ; 6(1): 63-73, 2012 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22675599

RESUMEN

Marinomonas mediterranea MMB-1(T) Solano & Sanchez-Amat 1999 belongs to the family Oceanospirillaceae within the phylum Proteobacteria. This species is of interest because it is the only species described in the genus Marinomonas to date that can synthesize melanin pigments, which is mediated by the activity of a tyrosinase. M. mediterranea expresses other oxidases of biotechnological interest, such as a multicopper oxidase with laccase activity and a novel L-lysine-epsilon-oxidase. The 4,684,316 bp long genome harbors 4,228 protein-coding genes and 98 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda