Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Chem Phys ; 142(8): 084309, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25725733

RESUMEN

We detect the change in vibrational frequency associated with the transition from a delocalized to a localized electronic state using femtosecond vibrational wavepacket techniques. The experiments are carried out in the mixed-valence linear chain material [Pt(en)2][Pt(en)2Cl2]⋅(ClO4)4 (en = ethylenediamine, C2H8N2), a quasi-one-dimensional system with strong electron-phonon coupling. Vibrational spectroscopy of the equilibrated self-trapped exciton is carried out using a multiple pulse excitation technique: an initial pump pulse creates a population of delocalized excitons that self-trap and equilibrate, and a time-delayed second pump pulse tuned to the red-shifted absorption band of the self-trapped exciton impulsively excites vibrational wavepacket oscillations at the characteristic vibrational frequencies of the equilibrated self-trapped exciton state by the resonant impulsive stimulated Raman mechanism, acting on the excited state. The measurements yield oscillations at a frequency of 160 cm(-1) corresponding to a Raman-active mode of the equilibrated self-trapped exciton with Pt-Cl stretching character. The 160 cm(-1) frequency is shifted from the previously observed wavepacket frequency of 185 cm(-1) associated with the initially generated exciton and from the 312 cm(-1) Raman-active symmetric stretching mode of the ground electronic state. We relate the frequency shifts to the changes in charge distribution and local structure that create the potential that stabilizes the self-trapped state.

2.
Biochim Biophys Acta ; 890(3): 395-8, 1987 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-3028479

RESUMEN

X-ray absorption spectroscopy at the Mn K-edge has been utilized to study the origin of the g = 4.1 EPR signal associated with the Mn-containing photosynthetic O2-evolving complex. Formation of the g = 4.1 signal by illumination of Photosystem II preparations at 140 K is associated with a shift of the Mn edge inflection point to higher energy. This shift is similar to that observed upon formation of the S2 multiline EPR signal by 190 K illumination. The g = 4.1 signal is assigned to the Mn complex in the S2 state.


Asunto(s)
Fotosíntesis , Oscuridad , Espectroscopía de Resonancia por Spin del Electrón/métodos , Luz , Manganeso , Análisis Espectral , Rayos X
3.
J Phys Condens Matter ; 25(14): 144204, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23478998

RESUMEN

We use femtosecond vibrational wavepacket techniques to time-resolve the coupled electronic and vibrational dynamics of exciton self-trapping in a series of materials in which the relative strength of the electron-phonon coupling can be compositionally tuned from the small to the large polaron limit. Transient absorption experiments are carried out in the quasi-one-dimensional halide-bridged mixed-valence transition metal linear chain complexes [Pt(en)2][Pt(en)2X2]⋅(ClO4)4 (en=ethylenediamine, C2H8N2) with X=Cl, Br and I. In each complex, we detect the formation of the self-trapped exciton through the appearance of its characteristic red-shifted optical absorption, and find that self-trapping occurs on a time scale of the order of a single vibrational period of the optical phonon mode that dominates the self-trapping dynamics. The associated optical phonon response, detected as wavepacket oscillations that modulate the exciton absorption, shows a significant softening of the optical phonon frequency compared to that of the unexcited system. The degree of softening is found to vary significantly with coupling strength, ranging from more than 40% in the strongly coupled chloride-bridged complex to less than 20% in the weakly coupled iodide-bridged complex. We relate these results to the extent of electronic delocalization by comparison with the electronic properties of the ground states of the materials and with the properties of their equilibrated self-trapped electronic states predicted by theoretical modeling.

4.
J Phys Chem B ; 116(35): 10582-9, 2012 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-22757623

RESUMEN

We probe the vibrational modes of the equilibrated self-trapped exciton (STE) in the mixed-valence linear chain material [Pt(en)(2)][Pt(en)(2)Br(2)]·(ClO(4))(4) using resonantly enhanced impulsive stimulated Raman excitation of the excited electronic state. In these measurements, excitons are created by photoexcitation of the optical intervalence charge transfer band, and after a delay to allow self-trapping and equilibration, the metastable STE is impulsively excited and probed within its red-shifted absorption band. The pump-pump-probe response reveals wavepacket oscillations at a frequency of 125 cm(-1) that are assigned to a Raman-active mode of the STE having Br-Pt-Br symmetric stretching character. This frequency is shifted from the 171 cm(-1) symmetric stretch Raman frequency of the ground electronic state, and from the previously observed 110 cm(-1) wavepacket modulation that accompanies the formation of the STE from the initially excited electronic state, reflecting a new component of the structural relaxation of the exciton.

5.
Biochemistry ; 27(11): 4013-20, 1988 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-3137969

RESUMEN

We have measured the X-ray absorption spectra of Fe in photosystem I (PS I) preparations from spinach and a thermophilic cyanobacterium, Synechococcus sp., to characterize structures of the Fe complexes that function as electron acceptors in PS I. These acceptors include centers A and B, which are probably typical [4Fe-4S] ferredoxins, and X. The structure of X is not known, but its electron paramagnetic resonance (EPR) spectrum has generated the suggestions that it is either a [2Fe-2S] or [4Fe-4S] ferredoxin or an Fe-quinone species. The iron X-ray absorption K-edge and iron extended X-ray absorption fine structure (EXAFS) spectra reveal that essentially all of the 11-14 Fe atoms present in the reaction center are present in the form of Fe-S centers and that not more than 1 atom out of 12 could be octahedral or oxygen-coordinated Fe. This suggests that, besides A and B, additional Fe-S clusters are present which are likely to be X. Our EXAFS spectra cannot be simulated adequately by a mixture of [4Fe-4S] ferredoxins with typical bond lengths and disorder parameters because the amplitude of Fe backscattering is small; however, excellent simulations of the data are consistent with a mixture of [2Fe-2S] ferredoxins and [4Fe-4S] ferredoxins, or with unusually distorted [4Fe-4S] clusters. We presume that the [2Fe-2S] or distorted [4Fe-4S] centers are X. The X-ray absorption spectra of PS I preparations from Synechococcus and spinach are essentially indistinguishable.


Asunto(s)
Clorofila/análisis , Hierro/análisis , Proteínas de Plantas/análisis , Azufre/análisis , Cianobacterias/análisis , Complejos de Proteína Captadores de Luz , Proteínas del Complejo del Centro de Reacción Fotosintética , Complejo de Proteína del Fotosistema I , Plantas/análisis , Análisis Espectral , Rayos X
6.
Biochemistry ; 27(11): 4021-31, 1988 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-2843222

RESUMEN

The Mn donor complex in the S1 and S2 states and the iron-quinone acceptor complex (Fe2+-Q) in O2-evolving photosystem II (PS II) preparations from a thermophilic cyanobacterium, Synechococcus sp., have been studied with X-ray absorption spectroscopy and electron paramagnetic resonance (EPR). Illumination of these preparations at 220-240 K results in formation of a multiline EPR signal very similar to that assigned to a Mn S2 species observed in spinach PS II, together with g = 1.8 and 1.9 EPR signals similar to the Fe2+-QA- acceptor signals seen in spinach PS II. Illumination at 110-160 K does not produce the g = 1.8 or 1.9 EPR signals, nor the multiline or g = 4.1 EPR signals associated with the S2 state of PS II in spinach; however, a signal which peaks at g = 1.6 appears. The most probable assignment of this signal is an altered configuration of the Fe2+-QA- complex. In addition, no donor signal was seen upon warming the 140 K illuminated sample to 215 K. Following continuous illumination at temperatures between 140 and 215 K, the average X-ray absorption Mn K-edge inflection energy changes from 6550 eV for a dark-adapted (S1) sample to 6551 eV for the illuminated (S2) sample. The shift in edge inflection energy indicates an oxidation of Mn, and the absolute edge inflection energies indicate an average Mn oxidation state higher than Mn(II). Upon illumination a significant change was observed in the shape of the features associated with 1s to 3d transitions. The S1 spectrum resembles those of Mn(III) complexes, and the S2 spectrum resembles those of Mn(IV) complexes. The extended X-ray absorption fine structure (EXAFS) spectrum of the Mn complex is similar in the S1 and S2 states. Simulations indicate O or N ligands at 1.75 +/- 0.05 A, transition metal neighbor(s) at 2.73 +/- 0.05 A, which are assumed to be Mn, and terminal ligands which are probably N and O at a range of distances around 2.2 A. The Mn-O bond length of 1.75 A and the transition metal at 2.7 A indicate the presence of a di-mu-oxo-bridged Mn structure. Simulations indicate that a symmetric tetranuclear cluster is unlikely to be present, while binuclear, trinuclear, or highly distorted tetranuclear structures are possible. The striking similarity of these results to those from spinach PS II suggests that the structure of the Mn complex is largely conserved across evolutionarily diverse O2-evolving photosynthetic species.


Asunto(s)
Clorofila/análisis , Cianobacterias/análisis , Hierro/metabolismo , Manganeso/metabolismo , Oxígeno/metabolismo , Proteínas de Plantas/análisis , Quinonas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Complejos de Proteína Captadores de Luz , Proteínas del Complejo del Centro de Reacción Fotosintética , Complejo de Proteína del Fotosistema II , Análisis Espectral , Temperatura , Rayos X
7.
Biochemistry ; 29(2): 486-96, 1990 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-2154248

RESUMEN

Hydroxylamine at low concentrations causes a two-flash delay in the first maximum flash yield of oxygen evolved from spinach photosystem II (PSII) subchloroplast membranes that have been excited by a series of saturating flashes of light. Untreated PSII membrane preparations exhibit a multiline EPR signal assigned to a manganese cluster and associated with the S2 state when illuminated at 195 K, or at 273 K in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). We used the extent of suppression of the multiline EPR signal observed in samples illuminated at 195 K to determine the fraction of PSII reaction centers set back to a hydroxylamine-induced S0-like state, which we designate S0*. The manganese K-edge X-ray absorption edges for dark-adapted PSII preparations with or without hydroxylamine are virtually identical. This indicates that, despite its high binding affinity to the oxygen-evolving complex (OEC) in the dark, hydroxylamine does not reduce chemically the manganese cluster within the OEC in the dark. After a single turnover of PSII, a shift to lower energy is observed in the inflection of the Mn K-edge of the manganese cluster. We conclude that, in the presence of hydroxylamine, illumination causes a reduction of the OEC, resulting in a state resembling S0. This lower Mn K-edge energy of S0*, relative to the edge of S1, implies the storage and stabilization of an oxidative equivalent within the manganese cluster during the S0----S1 state transition. An analysis of the extended X-ray absorption fine structure (EXAFS) of the S0* state indicates that a significant structural rearrangement occurs between the S0* and S1 states. The X-ray absorption edge position and the structure of the manganese cluster in the S0* state are indicative of a heterogeneous mixture of formal valences of manganese including one Mn(II) which is not present in the S1 state.


Asunto(s)
Clorofila/metabolismo , Cloroplastos/metabolismo , Hidroxilaminas/farmacología , Manganeso/metabolismo , Fotosíntesis , Proteínas de Plantas/metabolismo , Análisis Espectral , Espectroscopía de Resonancia por Spin del Electrón , Análisis de Fourier , Hidroxilamina , Luz , Complejos de Proteína Captadores de Luz , Oxidación-Reducción , Proteínas del Complejo del Centro de Reacción Fotosintética , Complejo de Proteína del Fotosistema II , Rayos X
8.
Biochemistry ; 26(19): 5967-73, 1987 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-2825768

RESUMEN

The structure of the Mn complex of photosystem II (PSII) was studied by X-ray absorption spectroscopy. Oxygen-evolving spinach PSII membranes containing 4-5 Mn/PSII were treated with 0.8 M CaCl2 to extract the 33-, 24-, and 16-kilodalton (kDa) extrinsic membrane proteins. Mn was not released by this treatment, but subsequent incubation at low Cl- concentration generated preparations containing 2 Mn/PSII. The Mn X-ray absorption K-edge spectrum of the CaCl2-washed preparation containing 4 Mn/PSII is very similar to spectrum of native PSII, indicating that the oxidation states and ligand symmetry of the Mn complex in these preparations are not significantly different. The Mn extended X-ray absorption fine structure (EXAFS) of CaCl2-washed PSII fits to a Mn neighbor at approximately 2.75 A and two shells of N or O at approximately 1.78 and approximately 1.92 A. These distances are similar to those we have previously reported for native PSII preparations [Yachandra, V. K., Guiles, R. D., McDermott, A. E., Cole, J. L., Britt, R. D., Dexheimer, S. L., Sauer, K., & Klein, M. P. (1987) Biochemistry (following paper in this issue)] and are indicative of an oxo-bridged Mn complex. Our results demonstrate that the structure of the Mn complex is largely unaffected by removal of 33-, 24-, and 16-kDa extrinsic proteins, do not provide ligands to Mn. The Mn K-edge spectrum of the CaCl2-washed sample containing 2 Mn/PSII has a dramatically altered shape, and the edge inflection point is shifted to lower energy. The position of the edge is consistent with a Mn oxidation state of +3.(ABSTRACT TRUNCATED AT 250 WORDS)


Asunto(s)
Clorofila/metabolismo , Manganeso/metabolismo , Proteínas de Plantas/metabolismo , Cloruro de Calcio , Espectroscopía de Resonancia por Spin del Electrón , Complejos de Proteína Captadores de Luz , Sustancias Macromoleculares , Peso Molecular , Proteínas del Complejo del Centro de Reacción Fotosintética , Complejo de Proteína del Fotosistema II , Plantas/metabolismo , Conformación Proteica , Análisis Espectral , Rayos X
9.
Biochemistry ; 26(19): 5974-81, 1987 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-3318924

RESUMEN

A Mn-containing enzyme complex is involved in the oxidation of H2O to O2 in algae and higher plants. X-ray absorption spectroscopy is well suited for studying the structure and function of Mn in this enzyme complex. Results of X-ray K-edge and extended X-ray absorption fine structure (EXAFS) studies of Mn in the S1 and S2 states of the photosynthetic O2-evolving complex in photosystem II preparations from spinach are presented in this paper. The S2 state was prepared by illumination at 190 K or by illumination at 277 K in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU); these are protocols that limit the photosystem II reaction center to one turnover. Both methods produce an S2 state characterized by a multiline electron paramagnetic resonance (EPR) signal. An additional protocol, illumination at 140 K, produces as a state characterized by the g = 4.1 EPR signal. We have previously observed a shift to higher energy in the X-ray absorption K-edge energy of Mn upon advancement from the dark-adapted S1 state to the S2 state produced by illumination at 190 K [Goodin, D. B., Yachandra, V. K., Britt, R. D., Sauer, K., & Klein, M. P. (1984) Biochim. Biophys. Acta 767, 209-216]. The Mn K-edge spectrum of the 277 K illuminated sample is similar to that produced at 190 K, indicating that the S2 state is similar when produced at 190 or 277 K.(ABSTRACT TRUNCATED AT 250 WORDS)


Asunto(s)
Clorofila/metabolismo , Manganeso/metabolismo , Oxígeno/metabolismo , Fotosíntesis , Proteínas de Plantas/metabolismo , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Complejos de Proteína Captadores de Luz , Proteínas del Complejo del Centro de Reacción Fotosintética , Complejo de Proteína del Fotosistema II , Plantas/metabolismo , Análisis Espectral , Rayos X
10.
Biochemistry ; 29(2): 471-85, 1990 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-2154247

RESUMEN

O2-evolving photosystem II (PSII) membranes from spinach have been cryogenically stabilized in the S3 state of the oxygen-evolving complex. The cryogenic trapping of the S3 state was achieved using a double-turnover illumination of dark-adapted PSII preparations maintained at 240 K. A double turnover of PSII was accomplished using the high-potential acceptor, Q400, which is the high-spin iron of the iron-quinone acceptor complex. EPR spectroscopy was the principal tool establishing the S-state composition and defining the electron-transfer events associated with a double turnover of PSII. The inflection point energy of the Mn X-ray absorption K-edge of PSII preparations poised in the S3 state is the same as for those poised in the S2 state. This is surprising in light of the loss of the multiline EPR signal upon advancing to the S3 state. This indicates that the oxidative equivalent stored within the oxygen-evolving complex (OEC) during this transition resides on another intermediate donor which must be very close to the manganese complex. An analysis of the Mn extended X-ray absorption fine structure (EXAFS) of PSII preparations poised in the S2 and S3 states indicates that a small structural rearrangement occurs during this photoinduced transition. A detailed comparison of the Mn EXAFS of these two S states with the EXAFS of four multinuclear mu-oxo-bridged manganese compounds indicates that the photosynthetic manganese site most probably consists of a pair of binuclear di-mu-oxo-bridged manganese structures. However, we cannot rule out, on the basis of the EXAFS analysis alone, a complex containing a mononuclear center and a linear trinuclear complex. The subtle differences observed between the S states are best explained by an increase in the spread of Mn-Mn distances occurring during the S2----S3 state transition. This increased disorder in the manganese distances suggests the presence of two inequivalent di-mu-oxo-bridged binuclear structures in the S3 state.


Asunto(s)
Benzoquinonas , Clorofila/metabolismo , Manganeso/metabolismo , Complejo de Proteína del Fotosistema II , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Análisis Espectral , Fenómenos Químicos , Química Física , Grupo Citocromo b/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Ferricianuros/farmacología , Análisis de Fourier , Luz , Complejos de Proteína Captadores de Luz , Proteínas del Complejo del Centro de Reacción Fotosintética , Quinonas/metabolismo , Rayos X
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda