Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phys Rev Lett ; 120(1): 017402, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29350953

RESUMEN

We report strong coupling between light and polaron optical excitations in a doped organic semiconductor microcavity at room temperature. Codepositing MoO_{3} and the hole transport material 4, 4^{'}-cyclohexylidenebis[N, N-bis(4-methylphenyl)benzenamine] introduces a large hole density with a narrow linewidth optical transition centered at 1.8 eV and an absorption coefficient exceeding 10^{4} cm^{-1}. Coupling this transition to a Fabry-Pérot cavity mode yields upper and lower polaron polariton branches that are clearly resolved in angle-dependent reflectivity with a vacuum Rabi splitting ℏΩ_{R}>0.3 eV. This result establishes a path to electrically control polaritons in organic semiconductors and may lead to increased polariton-polariton Coulombic interactions that lower the threshold for nonlinear phenomena such as polariton condensation and lasing.

2.
Nat Commun ; 8(1): 2252, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29269880

RESUMEN

Bipolaron states, in which two electrons or two holes occupy a single molecule or conjugated polymer segment, are typically considered to be negligible in organic semiconductor devices due to Coulomb repulsion between the two charges. Here we use charge modulation spectroscopy to reveal a bipolaron sheet density >1010 cm-2 at the interface between an indium tin oxide anode and the common small molecule organic semiconductor N,N'-Bis(3-methylphenyl)-N,N'-diphenylbenzidine. We find that the magnetocurrent response of hole-only devices correlates closely with changes in the bipolaron concentration, supporting the bipolaron model of unipolar organic magnetoresistance and suggesting that it may be more of an interface than a bulk phenomenon. These results are understood on the basis of a quantitative interface energy level alignment model, which indicates that bipolarons are generally expected to be significant near contacts in the Fermi level pinning regime and thus may be more prevalent in organic electronic devices than previously thought.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda