Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Artículo en Inglés | MEDLINE | ID: mdl-35682044

RESUMEN

The Indian Western Himalayas (IWHs) are a world famous tourist spot, and every year millions of tourists visit this area in fossil fuel-driven vehicles. Emissions from these vehicles persistently deteriorate the pristine environment of the IWHs. Therefore, in the current study, efforts were made to assess the compromised environmental conditions of Manali, Himachal Pradesh, India that resulted from the inflow of tourists and the activities undertaken by them. This study revealed that Manali could sustainably accommodate only 0.305 M tourists/month, and this threshold was reported to be crossed in the months of April, May and June. Furthermore, to augment these findings, water and ambient air samples were collected and analyzed for the presence of elemental carbon (EC) from one of the medium tourism potential regions of Manali, i.e., the Hamta glacier. The tributary receiving water from the Hamta glacier and the ambient air of the area was observed to be contaminated with 42 ± 12 ppb and 880 ± 43 µg m-3 of EC, respectively. It was observed that the inhalation and ingestion of EC-contaminated air and water could jeopardize human health due to a high lifetime cancer risk. However, without the intervention of eco-tourism in the study area, higher environmental health effects were also speculated. The observations made in this study are expected to trigger the interests of the researchers, international scientific community and regional authorities working towards the unsustainable development of the IWHs and deteriorating environmental conditions.


Asunto(s)
Contaminantes Atmosféricos , Neoplasias , Contaminantes Atmosféricos/análisis , Carbono/análisis , Monitoreo del Ambiente/métodos , Humanos , India/epidemiología , Neoplasias/epidemiología , Neoplasias/etiología , Material Particulado/análisis , Emisiones de Vehículos/análisis , Agua
2.
Artículo en Inglés | MEDLINE | ID: mdl-34281093

RESUMEN

BACKGROUND: The present work starts from a literature review of the evolution of Integrated Management Systems (IMSs), considering different points of view and standards: quality, environmental, occupational health and safety, sustainability and social issues. Even if the benefits are possible, there is not a common approach and a clear link between the integration of management systems and business performance, in particular considering safety performance. METHODS: The present study analyzes the application of Risk Assessment in order to realize the integration of management systems. The main objective is to provide a tool for an integrated evaluation of all company performances, starting from the definition of some Key Performance Indicators-KPIs-proposed for a particular case study, even if their choice is not the core of the paper. The assessment team members on the basis of their knowledge, experience and useful literature, could choose the right KPIs for the specific application, able to take a picture of the current state and to suggest a possible recommended action of improving. The proposed Risk Assessment approach is an integration of modern management techniques: Integrated Management System and Improving Cycle DMAIC. RESULTS: The new method, called the Global Performance Index for Integrated Management System-GPI-IMS, has been applied to a real case study in the logistic field in order to evaluate its goodness and possible generalization. CONCLUSIONS: The proposed method allows to define the requirements that any company must have to perform the best. The role of the assessment team is very important to evaluate the global performance of the company and to suggest the corrective actions to be adopted.


Asunto(s)
Salud Laboral , Humanos , Medición de Riesgo
3.
Artículo en Inglés | MEDLINE | ID: mdl-33418973

RESUMEN

Geosynthetics are extensively utilized to improve the stability of geotechnical structures and slopes in urban areas. Among all existing geosynthetics, geotextiles are widely used to reinforce unstable slopes due to their capabilities in facilitating reinforcement and drainage. To reduce settlement and increase the bearing capacity and slope stability, the classical use of geotextiles in embankments has been suggested. However, several catastrophic events have been reported, including failures in slopes in the absence of geotextiles. Many researchers have studied the stability of geotextile-reinforced slopes (GRSs) by employing different methods (analytical models, numerical simulation, etc.). The presence of source-to-source uncertainty in the gathered data increases the complexity of evaluating the failure risk in GRSs since the uncertainty varies among them. Consequently, developing a sound methodology is necessary to alleviate the risk complexity. Our study sought to develop an advanced risk-based maintenance (RBM) methodology for prioritizing maintenance operations by addressing fluctuations that accompany event data. For this purpose, a hierarchical Bayesian approach (HBA) was applied to estimate the failure probabilities of GRSs. Using Markov chain Monte Carlo simulations of likelihood function and prior distribution, the HBA can incorporate the aforementioned uncertainties. The proposed method can be exploited by urban designers, asset managers, and policymakers to predict the mean time to failures, thus directly avoiding unnecessary maintenance and safety consequences. To demonstrate the application of the proposed methodology, the performance of nine reinforced slopes was considered. The results indicate that the average failure probability of the system in an hour is 2.8×10-5 during its lifespan, which shows that the proposed evaluation method is more realistic than the traditional methods.


Asunto(s)
Teorema de Bayes , Cadenas de Markov , Método de Montecarlo , Reproducibilidad de los Resultados , Incertidumbre
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda