RESUMEN
Usutu virus (USUV), an arbovirus from the Flaviviridae family, genus Flavivirus, has recently gained increasing attention because of its potential for emergence. After his discovery in South Africa, USUV spread to other African countries, then emerged in Europe where it was responsible for epizootics. The virus has recently been found in Asia. USUV infection in humans is considered to be most often asymptomatic or to cause mild clinical signs. However, a few cases of neurological complications such as encephalitis or meningo-encephalitis have been reported in both immunocompromised and immunocompetent patients. USUV natural life cycle involves Culex mosquitoes as its main vector, and multiple bird species as natural viral reservoirs or amplifying hosts, humans and horses can be incidental hosts. Phylogenetic studies carried out showed eight lineages, showing an increasing genetic diversity for USUV. This work describes the development and validation of a novel whole-genome amplicon-based sequencing approach to Usutu virus. This study was carried out on different strains from Senegal and Italy. The new approach showed good coverage using samples derived from several vertebrate hosts and may be valuable for Usutu virus genomic surveillance to better understand the dynamics of evolution and transmission of the virus.
Asunto(s)
Infecciones por Flavivirus , Flavivirus , Genoma Viral , Filogenia , Flavivirus/genética , Flavivirus/clasificación , Flavivirus/aislamiento & purificación , Animales , Infecciones por Flavivirus/virología , Infecciones por Flavivirus/veterinaria , Humanos , Senegal , Italia , Aves/virología , ARN Viral/genética , Variación Genética , Culex/virología , Secuenciación Completa del Genoma , Caballos/virologíaRESUMEN
Bovine alphaherpesvirus-1 (BoAHV-1) infection is common in cattle worldwide. However, information on the spread of BoAHV-1-circulating strains in Italy remains limited. In this study, we investigated an outbreak characterized by severe respiratory symptoms in a cattle herd (n = 30) located in Central Italy. BoAHV-1 was isolated from three cattle in a cell culture, which confirmed viral infection. Next, we characterized one (16453/07 TN) of the three isolates of BoAHV-1 using whole-genome sequencing. BLASTn and phylogenetic analysis revealed a nucleotide identity >99% with all BoAHV-1 strains belonging to subtype 1.1, highlighting the genetic stability of the virus. This study reports the first full genomic characterization of a BoAHV-1 isolate in Italy, enriching our understanding of the genetic characteristics of the circulating BoAHV-1 strain in Italy.
Asunto(s)
Enfermedades de los Bovinos , Animales , Bovinos , Filogenia , Genómica , Genoma Viral , Brotes de Enfermedades/veterinaria , Italia/epidemiologíaRESUMEN
Within public health control strategies for SARS-CoV-2, whole genome sequencing (WGS) is essential for tracking viral spread and monitoring the emergence of variants which may impair the effectiveness of vaccines, diagnostic methods, and therapeutics. In this manuscript different strategies for SARS-CoV-2 WGS including metagenomic shotgun (SG), library enrichment by myBaits® Expert Virus-SARS-CoV-2 (Arbor Biosciences), nCoV-2019 sequencing protocol, ampliseq approach by Swift Amplicon® SARS-CoV-2 Panel kit (Swift Biosciences), and Illumina COVIDSeq Test (Illumina Inc.), were evaluated in order to identify the best approach in terms of results, labour, and costs. The analysis revealed that Illumina COVIDSeq Test (Illumina Inc.) is the best choice for a cost-effective, time-consuming production of consensus sequences.
RESUMEN
Epithelial-mesenchymal transition (EMT) changes cell phenotype by affecting immune properties of amniotic epithelial cells (AECs). The present study shows how the response to lipopolysaccharide of cells collected pre- (eAECs) and post-EMT (mAECs) induces changes in their transcriptomics profile. In fact, eAECs mainly upregulate genes involved in antigen-presenting response, whereas mAECs over-express soluble inflammatory mediator transcripts. Consistently, network analysis identifies CIITA and Nrf2 as main drivers of eAECs and mAECs immune response, respectively. As a consequence, the depletion of CIITA and Nrf2 impairs the ability of eAECs and mAECs to inhibit lymphocyte proliferation or macrophage-dependent IL-6 release, thus confirming their involvement in regulating immune response. Deciphering the mechanisms controlling the immune function of AECs pre- and post-EMT represents a step forward in understanding key physiological events wherein these cells are involved (pregnancy and labor). Moreover, controlling the immunomodulatory properties of eAECs and mAECs may be essential in developing potential strategies for regenerative medicine applications.
RESUMEN
It is unclear whether West Nile virus (WNV) circulates between Africa and Europe, despite numerous studies supporting an African origin and high transmission in Europe. We integrated genomic data with geographic observations and phylogenetic and phylogeographic inferences to uncover the spatial and temporal viral dynamics of WNV between these two continents. We focused our analysis towards WNV lineages 1 (L1) and 2 (L2), the most spatially widespread and pathogenic WNV lineages. Our study shows a Northern-Western African origin of L1, with back-and-forth exchanges between West Africa and Southern-Western Europe; and a Southern African origin of L2, with one main introduction from South Africa to Europe, and no back introductions observed. We also noticed a potential overlap between L1 and L2 Eastern and Western phylogeography and two Afro-Palearctic bird migratory flyways. Future studies linking avian and mosquito species susceptibility, migratory connectivity patterns, and phylogeographic inference are suggested to elucidate the dynamics of emerging viruses.
Asunto(s)
Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Virus del Nilo Occidental/genética , Filogenia , Europa (Continente)/epidemiología , Sudáfrica , AvesRESUMEN
West Nile virus is a re-emerging arbovirus whose impact on public health is increasingly important as more and more epidemics and epizootics occur, particularly in America and Europe, with evidence of active circulation in Africa. Because birds constitute the main reservoirs, migratory movements allow the diffusion of various lineages in the world. It is therefore crucial to properly control the dispersion of these lineages, especially because some have a greater health impact on public health than others. This work describes the development and validation of a novel whole-genome amplicon-based sequencing approach to West Nile virus. This study was carried out on different strains from lineage 1 and 2 from Senegal and Italy. The presented protocol/approach showed good coverage using samples derived from several vertebrate hosts and may be valuable for West Nile genomic surveillance.
Asunto(s)
Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Humanos , Virus del Nilo Occidental/genética , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/veterinaria , Europa (Continente)/epidemiología , Italia , SenegalRESUMEN
In January 2022, West Nile virus (WNV) lineage 2 (L2) was detected in an adult female goshawk rescued near Perugia in the region of Umbria (Italy). The animal showed neurological symptoms and died 15 days after its recovery in a wildlife rescue center. This was the second case of WNV infection recorded in birds in the Umbria region during the cold season, when mosquitoes, the main WNV vectors, are usually not active. According to the National Surveillance Plan, the Umbria region is included amongst the WNV low-risk areas. The necropsy evidenced generalized pallor of the mucous membranes, mild splenomegaly, and cerebral edema. WNV L2 was detected in the brain, heart, kidney, and spleen homogenate using specific RT-PCR. Subsequently, the extracted viral RNA was sequenced. A Bayesian phylogenetic analysis performed through a maximum-likelihood tree showed that the genome sequence clustered with the Italian strains within the European WNV strains among the central-southern European WNV L2 clade. These results, on the one hand, confirmed that the WNV L2 strains circulating in Italy are genetically stable and, on the other hand, evidenced a continuous WNV circulation in Italy throughout the year. In this report case, a bird-to-bird WNV transmission was suggested to support the virus overwintering. The potential transmission through the oral route in a predatory bird may explain the relatively rapid spread of WNV, as well as other flaviviruses characterized by similar transmission patterns. However, rodent-to-bird transmission or mosquito-to-bird transmission cannot be excluded, and further research is needed to better understand WNV transmission routes during the winter season in Italy.
RESUMEN
Although there are increasing reports on the prevalence of Listeria monocytogenes in wild species, this is the first case of listeriosis in sea turtle. An adult female Caretta caretta was rescued after being stranded alive along the coast of the Abruzzo region (Italy) in summer 2021. The turtle died in 6 days due to respiratory failure. The necropsy showed widespread organ lesions, such as yellow foci of necrosis in many organs, gastrointestinal erosions, pericarditis, and granulomatous pneumonia. Microbiological and histological analyses were performed on several organs. Listeria monocytogenes was isolated from multiple organs, indicating a case of septicaemic listeriosis, and the genome was sequenced and characterized. All the colonies analysed belonged to the same strain serogroup IVb, ST388, and CC388.
RESUMEN
Several lineages of SARS-CoV-2 are currently circulating worldwide. During SARS-CoV-2 diagnostic activities performed in Abruzzo region (central Italy) several strains belonging to the B.1.177.75 lineage tested negative for the N gene but positive for the ORF1ab and S genes (+/+/- pattern) by the TaqPath COVID-19 CE-IVD RT-PCR Kit manufactured by Thermofisher. By sequencing, a unique mutation, synonymous 28948C > T, was found in the N-negative B.1.177.75 strains. Although we do not have any knowledge upon the nucleotide sequences of the primers and probe adopted by this kit, it is likely that N gene dropout only occurs when 28948C > T is coupled with 28932C > T, this latter present, in turn, in all B.1.177.75 sequences available on public databases. Furthermore, epidemiological analysis was also performed. The majority of the N-negative B.1.177.75 cases belonged to two clusters apparently unrelated to each other and both clusters involved young people. However, the phylogeny for sequences containing the +/+/- pattern strongly supports a genetic connection and one common source for both clusters. Though, genetic comparison suggests a connection rather than indicating the independent emergence of the same mutation in two apparently unrelated clusters. This study highlights once more the importance of sharing genomic data to link apparently unrelated epidemiological clusters and to, remarkably, update molecular tests.
Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , Proteínas de la Nucleocápside de Coronavirus/genética , SARS-CoV-2/genética , COVID-19/diagnóstico , Punto Alto de Contagio de Enfermedades , Genoma Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Italia/epidemiología , Nucleocápside/genética , Fosfoproteínas/genética , Polimorfismo de Nucleótido Simple/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/aislamiento & purificaciónRESUMEN
Hepatitis E virus (HEV) is an emergent zoonotic pathogen, causing worldwide acute and chronic hepatitis in humans. HEV comprises eight genotypes and several subtypes. HEV genotypes 3 and 4 (HEV3 and HEV4) are zoonotic. In Italy, the most part of HEV infections (80%) is due to autochthonous HEV3 circulation of the virus, and the key role played by wild animals is generally accepted. Abruzzo is an Italian region officially considered an HEV "hot spot", with subtype HEV3-c being up to now the only one reported among wild boars. During the year 2018-2019, a group of wild boars in Abruzzo were screened for HEV; positive RNA liver samples were subjected to HEV characterization by using the whole genome sequencing (WGS) approach methodology. This represents the first report about the detection of HEV-3 subtypes e and f in the wild boar population in this area. Since in Italy human infections from HEV 3-e and f have been associated with pork meat consumption, our findings deserve more in-depth analysis with the aim of evaluating any potential correlation between wild animals, the pork chain production and HEV human infections.
RESUMEN
We report the chromosome and plasmid sequences of a strain of Listeria monocytogenes IVb variant 1, a recently emerging serotype, isolated in Italy from ready-to-eat vegetables.
RESUMEN
Mycoplasma mycoides subsp. mycoides (Mmm) is the etiological agent of contagious bovine pleuropneumonia (CBPP), one of the major diseases affecting cattle in sub-Saharan Africa. Some evidences suggest that the immune system of the host (cattle) plays an important role in the pathogenic mechanism of CBPP, but the factors involved in the process remain largely unknown. The present study aimed to investigate the cell response of bovine polymorphonuclear neutrophils (PMNs) after Mmm in vitro exposure using one step RT-qPCR and Western blotting. Data obtained indicate that gene and protein expression levels of some pro-inflammatory factors already change upon 30 min of PMNs exposure to Mmm. Of note, mRNA expression level in Mmm exposed PMNs increased in a time-dependent manner and for all time points investigated; targets expression was also detected by Western blotting in Mmm exposed PMNs only. These data demonstrate that when bovine PMN cells are triggered by Mmm, they undergo molecular changes, upregulating mRNA and protein expression of specific pro-inflammatory factors. These results provide additional information on host-pathogen interaction during CBPP infection.
RESUMEN
In this report, the draft genome sequence of Listeria monocytogenes serovar 1/2a strain IZSAM_Lm_14-16064, isolated in Italy from a cooked ham, is announced. The genome is similar to that of a clinical strain isolated in 2014.