RESUMEN
Lipase B from Candida antarctica (CalB) is one of the biocatalysts most used in organic synthesis due to its ability to act in several medium, wide substrate specificity and enantioselectivity, tolerance to non-aqueous environment, and resistance to thermal deactivation. Thus, the objective of this work was to treat CalB in supercritical carbon dioxide (SC-CO2) and liquefied petroleum gas (LPG), and measure its activity before and after high-pressure treatment. Residual specific hydrolytic activities of 132% and 142% were observed when CalB was exposed to SC-CO2 at 35 â, 75 bar and 1 h and to LPG at 65 â, 30 bar and 1 h, respectively. Residual activity of the enzyme treated at high pressure was still above 100% until the 20th day of storage at low temperatures. There was no difference on the residual activity loss of CalB treated with LPG and stored at different temperatures over time. Greater difference was observed between CalB treated with CO2 and flash-frozen in liquid nitrogen (- 196 â) followed by storage in freezer (- 10 â) and CalB stored in freezer at - 10 â. Such findings encourage deeper studies on CalB as well as other enzymes behavior under different types of pressurized fluids aiming at industrial application.
Asunto(s)
Enzimas Inmovilizadas , Lipasa , Dióxido de Carbono , Proteínas FúngicasRESUMEN
The production of 2,3-butanediol (2,3-BDO), a dialcohol of great interest for the food, chemical, and pharmaceutical industry, through the fermentation of biomass, is a sustainable process strategic position for countries with abundant biomass generated by the agribusiness. However, the downstream process of 2,3-BDO is onerous due to the complexity of fermentation broth and the physical-chemical characteristics of the 2,3-BDO. This study investigated the feasibility of 2,3-BDO extraction from model aqueous solutions using aqueous two-phase systems (ATPS). A central composite rotational design (CCRD) was employed to evaluate different ATPS compositions and the influences on the 2,3-BDO recovery and partition coefficient. The polyethylene glycol (PEG) and different concentrations of sodium citrate, ammonium sulfate, and potassium phosphate were investigated. The concentration of salt and PEG in the ATPS was identified as the most significant factors influencing the recovery and partition coefficient of 2,3-BDO. The recovery of 2,3-BDO reached 94.5% and was obtained when the system was composed of 36.22% (w/w) of PEG 4000 and 4.47% (w/w) of potassium phosphate. The results indicate that ATPS based on PEG-salt has a high potential for industrial application, using mild conditions and a simple process for recovering and purifying the 2,3-BDO produced from microbiological synthesis.
Asunto(s)
Cloruro de Sodio , Agua , Sulfato de Amonio , Butileno Glicoles , Fosfatos , Polietilenglicoles/química , Compuestos de Potasio , Cloruro de Sodio/química , Citrato de Sodio , Agua/químicaRESUMEN
Jambolan is an unexplored fruit rich in bioactive compounds like anthocyanins, catechin, and gallic acid. Thus, the extraction of bioactive compounds allows adding value to the fruit. In this context, the present study reports the recovery and concentration of jambolan fruit extract by ultra and nanofiltration for the first time. Acidified water was used to extract polyphenols from the pulp and peel of jambolan. The extracts were concentrated using ultrafiltration and nanofiltration membranes with nominal molecular weight cut-off ranging from 180 to 4000 g mol-1. Total monomeric anthocyanin, total phenolic compounds, and antioxidant capacity were analyzed. Phenolic compounds were quantified, and anthocyanins were identified by high-performance liquid chromatography coupled to diode-array detection and mass spectrometry (HPLC-DAD-MS). Concentration factors higher than 4.0 were obtained for anthocyanins, gallic acid, and catechin after nanofiltration of the extracts. Other compounds such as epicatechin, p-Coumaric acid, and ferulic acid were quantified in the concentrated extract, and the main anthocyanins identified were 3,5-diglucoside: petunidin, malvidin, and delphinidin. Therefore, jambolan extract showed a high potential to be used as a natural dye and antioxidant in food products.
Asunto(s)
Syzygium , Antocianinas/análisis , Antioxidantes , Cromatografía Líquida de Alta Presión , Frutas/química , Fenoles/análisis , Extractos VegetalesRESUMEN
Membrane technology is an interesting alternative to conventional gelatin clarification methods, resulting in the elimination of refining chemical agents. In this work, the application of a permanent magnetic field as a pre-treatment of the gelatin solutions was proposed as a strategy to improve the microfiltration (MF) performance. Filtration tests were performed using a 1.5% swine gelatin solution at 40 °C through cellulose acetate membranes in a tangential flow module. Prior to the filtrations, the feed solutions were pretreated by the circulation of the solution through magnetic fields with different flux densities, 0.7 T and 1.34 T, for 2 h. The magnetic induction of the solution significantly increased the permeate flux and the recovery of hydraulic permeance by 63% and 122%, respectively, showing the application of the magnetic field in the solution of gelatin is an attractive alternative to improve the performance of the process.
RESUMEN
This study evaluated the production of cellulolytic enzymes from different agricultural residues. The crude enzyme extract produced was characterized and applied for saccharification of some agricultural residues. Maximum cellulolytic activities were obtained using soybean hulls. All enzymatic activities were highly stable at 40 °C at a pH range of 4.5-5.5. For stability at low temperatures, the enzyme extract was stored at freezing temperature and cooling for about 290 days without major loss of activity. The Km values found for total cellulase (FPase), endoglucanase (CMCase), and xylanase were 19.73 mg ml-1, 0.65 mg ml-1, and 22.64 mg ml-1, respectively, and Vmax values were 0.82 mol min-1 mg-1, 0.62 mol min-1 mg-1, and 104.17 mol min-1 mg-1 to cellulose, carboxymethyl cellulose, and xylan, respectively. In the saccharification tests, the total amount of total reducing sugars (TRS) released from 1 g of soybean hulls catalyzed by the enzymes present in the crude enzyme extract was 0.16 g g-1 dry substrate.
Asunto(s)
Biocombustibles , Celulasa , Proteínas Fúngicas , Glycine max/química , Trichoderma/enzimología , Celulasa/química , Celulasa/aislamiento & purificación , Proteínas Fúngicas/química , Proteínas Fúngicas/aislamiento & purificación , Calor , Concentración de Iones de HidrógenoRESUMEN
The present study evaluated the purification of inulinase by changing the ionic strength of the medium by addition of NaCl and CaCl2 followed by precipitation with n-propyl alcohol or iso-propyl alcohol. The effects of the concentration of alcohols and the rate of addition of alcohols in the crude extract on the purification yield and purification factor were evaluated. Precipitation caused an activation of enzyme and allowed purification factors up to 2.4-fold for both alcohols. The purification factor was affected positively by the modification of the ionic strength of the medium to 0.5 mol.L-1 NaCl before precipitation with the alcohol (n-propyl or iso-propyl). A purification factor of 4.8-fold and an enzyme yield of 78.1 % could be achieved by the addition of 0.5 mol.L-1 of NaCl to the crude extract, followed by the precipitation with 50 % (v/v) of n-propyl alcohol, added at a flow rate of 19.9 mL/min.
Asunto(s)
Alcoholes/química , Precipitación Química , Glicósido Hidrolasas/química , Glicósido Hidrolasas/aislamiento & purificación , Concentración Osmolar , Cloruro de Calcio/química , Medios de Cultivo/química , Kluyveromyces/química , Kluyveromyces/aislamiento & purificación , Valores de Referencia , Reproducibilidad de los Resultados , Sales (Química)/química , Cloruro de Sodio/química , Solventes/químicaRESUMEN
This short note compares the chemical profile of pecan nut oil samples obtained from pressurized n-butane and cold pressing with two commercial oils. The conventional cold pressing technique yielded 58.9 wt%, while pressurized n-butane yielded from 53 to 65 wt%, being the highest yield at 55 °C, and pressure of 40 bar. The n-butane behaves nearly like a piston fluid within the experimental conditions used. The results showed that the extraction variables had a slight influence on the fatty acid composition of the samples. Extraction with n-butane thus showed to be a promising alternative technique to conventional extraction methods, as very mild operating conditions and eco-friendly solvent can be used to provide good results without any residues in the final product.
RESUMEN
The extraction of litchi (Litchi chinensis Sonn.) and oat (Avena sativa L.) seeds were investigated using n-butane as pressurized solvent by evaluating the effect of pressure in the range of 7-100 bar and temperature from 25 to 70 °C on the extract yield and chemical composition together with the antioxidant activity of the extracts obtained. It was experimentally observed extraction yields for both seeds up to ~3.5 wt%, with a total phenolic content around 126.4 mg GAE/100 g of extract, and an antioxidant activity up to 78.36%. Oat seeds extract presented higher values of these parameters evaluated compared to litchi extract. Based on the results found, it seems that n-butane may be a promising solvent to conventional extraction methods, as mild operating conditions and eco-friendly solvent can be used to provide good results without any residues in the final product.
RESUMEN
Dairy industry wastewater contains high levels of organic matter, consisting mainly of fat, protein and products of their partial microbial decomposition. In the present study, the use of continuous electrocoagulation is proposed for the primary treatment of dairy wastewater. The electrochemical treatment was carried out in a continuous flow cell with aluminum electrodes. The influence of the voltage, the distance between the electrodes and the hydraulic residence time (HRT) on the process performance was assessed, by measuring the removal of color, turbidity, total organic carbon (TOC) and chemical oxygen demand (COD). The optimum voltage, distance between the electrodes and HRT were 10 V, 1 cm and 90 min, respectively, yielding a current density of 13.3 A.m(-2). Under these conditions, removal of color, turbidity, TOC and COD were 94%, 93%, 65% and 69%, respectively, after a steady state was reached in the continuous flow reactor.
Asunto(s)
Técnicas Electroquímicas , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Aluminio/química , Análisis de la Demanda Biológica de Oxígeno , Industria Lechera , Electrodos , Concentración de Iones de HidrógenoRESUMEN
BACKGROUND: This study investigated the performance of a membrane reactor system for esterification of oleic acid and butyric acid with ethanol by Penicillium crustosum lipase using polyethersulfone membranes with molecular weight cut-offs of 30, 60 and 100 kDa at pressures up to 200 kPa. RESULTS: The confinement of lipase with 60 and 100 kDa membranes showed the best results. The esterification of butyric acid in the membrane reactor and with free lipase showed higher conversions than those obtained with oleic acid, since the system operated with oleic acid was more subject to fouling and thus could not be run for repeated cycles. CONCLUSION: The confinement of lipase from P. crustosum in a membrane reactor was possible, resulting in the satisfactory conversion of butyric acid to ethyl butyrate with the possibility of reuse of the immobilized enzyme.
Asunto(s)
Reactores Biológicos , Ácidos Grasos/metabolismo , Lipasa/metabolismo , Penicillium/enzimología , Ácido Butírico/química , Ácido Butírico/metabolismo , Enzimas Inmovilizadas , Etanol/química , Etanol/metabolismo , Fermentación , Membranas Artificiales , Ácido Oléico/química , Ácido Oléico/metabolismo , Factores de TiempoRESUMEN
For improving the oxidative stability of a polyunsaturated oil, we co-encapsulated polyphenols from a concentrated beet by-product extract (CEB) with linseed oil using W1/O/W2 emulsions produced through emulsification with dynamic membranes of tunable pore size (DMTS), a low-energy high-throughput emulsification technology. Emulsions were stabilized with lesser mealworm protein concentrate (LMPC) and with an LMPC-derived antioxidant emulsifier (LMPC conjugated to tannic acid (LMPC-TA)). Regarding productivity, values of transmembrane flux were high (above 100 m3 m-2 h-1), and of industrial interest. Regardless of the protein used, emulsions showed an encapsulation efficiency higher than 67.5 %, while droplet size (D4,3) was below 8.28 µm. All emulsions were physically stable for 16 days at 4 °C, while at 25 °C, those stabilized with LMPC-TA had a less pronounced increase in D4,3. In all cases, emulsions containing CEB and LMPC-TA inhibited oil oxidation, increasing the shelf life of the emulsions.
RESUMEN
Aqueous enzymatic extraction (AEE) of macauba pulp oil (MPO) was performed in this study with five commercial enzymatic pools. The chemical, nutritional, and thermal properties of the oils with high oil efficiency by AEE were evaluated and compared with mechanical pressing (MP) and organic solvent extraction (SE). Among the AEE processes, the pectinase pool (at pH 5.5 and 50 °C) exhibited the highest process efficiency (88.6 %). The oils presented low acidity values (0.4-3.1 %) and low molar absorptivities, indicating minimal oil degradation. Bioactive compounds, such as carotenoids, were found in MPO. The iodine index and the fatty acid profile of the oils revealed a high content of unsaturated fatty acids, particularly oleic and linoleic acids, with excellent nutritional scores, as evidenced by anti-atherogenicity and anti-thrombogenicity indices. These findings emphasized that AEE is an eco-friendly approach for extracting high-quality MPO with beneficial health compounds for food products.
Asunto(s)
Ácidos Grasos , Aceites de Plantas , Aceites de Plantas/química , Ácidos Grasos/análisis , Ácidos Grasos Insaturados/análisis , Antioxidantes/análisis , Semillas/química , Agua/análisisRESUMEN
Chocolate is a worldwide consumed food. This study investigated the fortification of sugar-free white chocolate with Lacticaseibacillus rhamnosus GG microcapsule co-encapsulated with beet residue extract. The chocolates were evaluated for moisture, water activity, texture, color properties, melting, physicochemical, and probiotic stability during storage. Furthermore, the survival of L. rhamnosus GG and the bioaccessibility of phenolic compounds were investigated under in vitro simulated gastrointestinal conditions. Regarding the characterization of probiotic microcapsules, the encapsulation efficiency of L. rhamnosus GG was > 89 % while the encapsulation efficiency of phenolic compounds was > 62 %. Chocolates containing probiotic microcapsules were less hard and resistant to breakage. All chocolates had a similar melting behavior (endothermic peaks between 32.80 and 34.40 °C). After 120 days of storage at 4 °C, probiotic populations > 6.77 log CFU/g were detected in chocolate samples. This result demonstrates the potential of this matrix to carry L. rhamnosus GG cells. Regarding the resistance of probiotic strains during gastric simulation, the co-encapsulation of L. rhamnosus GG with beet extract contributed to high counts during gastrointestinal transit, reaching the colon (48 h) with viable cell counts equal to 11.80 log CFU/g. Finally, one of our main findings was that probiotics used phenolic compounds as a substrate source, which may be an observed prebiotic effect.
Asunto(s)
Beta vulgaris , Chocolate , Lacticaseibacillus rhamnosus , Cápsulas , Extractos VegetalesRESUMEN
This work evaluates the effects of a static magnetic field on the permeation of bovine serum albumin (BSA) in a tangential ultrafiltration membrane module. Experimental tests were carried out at different pHs using a poly(sulfone) membrane with molecular weight cut off of 60 kDa under the influence of a 0.4 T neodymium-iron-boron magnetic field. Results showed an increase in the permeate flux of water after the cleaning procedures of the new and reused membranes in the presence of the magnetic field. The elusive mechanism of magnetic memory is also shown to take place for the water fluxes fully recovered after the cleaning procedures when the magnetic field was applied to the system before the permeation. When the magnetic field was applied during permeation, the water fluxes presented lower percent of recuperation after the cleaning procedures, thus suggesting that the BSA solution may have somewhat been influenced by magnetic memory.
Asunto(s)
Campos Magnéticos , Albúmina Sérica Bovina/química , Ultrafiltración/instrumentación , Ultrafiltración/métodos , Animales , Boro/química , Bovinos , Diseño de Equipo , Concentración de Iones de Hidrógeno , Hierro/química , Membranas Artificiales , Neodimio/química , Polímeros/química , Albúmina Sérica Bovina/aislamiento & purificación , Soluciones , Sulfonas/química , TemperaturaRESUMEN
Techniques capable of producing small-sized probiotic microcapsules with high encapsulation yields are of industrial and scientific interest. In this study, an innovative membrane emulsification system was investigated in the production of microcapsules containing Lacticaseibacillus rhamnosus GG® (Lr), sodium alginate (ALG), and whey protein (WPI), rice protein (RPC), or pea protein (PPC) as encapsulating agents. The microcapsules were characterized by particle size distribution, optical microscopy, encapsulation yield, morphology, water activity, hygroscopicity, thermal properties, Fourier-transform infrared spectroscopy (FTIR), and probiotic survival during in vitro simulation of gastrointestinal conditions. The innovative encapsulation technique resulted in microcapsules with diameters varying between 18 and 29 µm, and encapsulation yields > 93%. Combining alginate and whey, rice, or pea protein improved encapsulation efficiency and thermal properties. The encapsulation provided resistance to gastrointestinal fluids, resulting in high probiotic viability at the end of the intestinal phase (> 7.18 log CFU g-1). The proposed encapsulation technology represents an attractive alternative to developing probiotic microcapsules for future food applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s11947-023-03099-w.
RESUMEN
Xanthohumol, a chalcone unique to hops, has attracted attention from researchers due to its several pharmacological effects on humans. In industry, hops are almost exclusively used in beer production, generating tons of solid waste - hot trub from the boiling step and spent hops from the dry hopping - rich in biocompounds, among them xanthohumol, that could be recovered and used for several nutritional purposes. The literature is extensive on extraction processes of xanthohumol directly from hops, but only a few studies present its recovery from brewery solid waste. We focus on presenting the xanthohumol characteristics and benefits for human consumption, and discuss the main extraction techniques, their advantages and limitations, to prospect strategies to recover this high-value compound from brewing solid waste. Recent extraction processes represent promising approaches to overcome the limitations of conventional methods, but further studies are still needed to understand xanthohumol extraction and purification and induce industrial upscaling.
Asunto(s)
Productos Biológicos , Humulus , Propiofenonas , Humanos , Residuos Sólidos , Flavonoides/análisisRESUMEN
This work is focused on the characterization of a commercial cellulase in terms of optimum pH and temperature, stability to pH and temperature and affinity of this enzyme to several substrates, determining the Michaelis-Menten parameters. Maximum activity of cellulase was obtained for the temperature range from 40 to 50 °C and pH from 5.2 to 5.5. Enzyme activity decreased only 15% after 150 h of reaction at temperatures between 30 and 50 °C. No loss of activity was observed at pH 5.0 and 5.5. The cellulase showed satisfactory results in the hydrolysis of agroindustrial substrates, since similar activity was verified on filter paper and other agroindustrial substrates.
Asunto(s)
Agricultura , Celulasa/metabolismo , Celulasa/antagonistas & inhibidores , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Hidrólisis , TemperaturaRESUMEN
The main objective of this work was to optimize lipase production, in terms of hydrolytic and esterification activities, by Penicillium brevicompactum and Penicillium verrucosum in solid state fermentation using agroindustrial residues as raw material. Maxima hydrolytic activities of 48.6 and 87.7 U/g were achieved when P. brevicompactum was cultured in babassu cake and castor meal, respectively. Higher esterification activities (around 244 U/g) were achieved when P. brevicompactum was used as microorganism and babassu cake as raw material. Different experimental conditions led to these promising values, clearly showing that no correlation can be attributed between hydrolytic and esterification activities. In spite of the several applications of lipases which are capable of catalyze synthesis reactions, only few works in this subject are presented in the literature, especially when low cost raw materials are used.
Asunto(s)
Proteínas Fúngicas/biosíntesis , Lipasa/biosíntesis , Penicillium/enzimología , Penicillium/crecimiento & desarrollo , Medios de Cultivo/químicaRESUMEN
Fouling growth in brackish water distribution systems (BWDS), especially calcium-silica fouling, is inevitable issue in brackish water desalination, chemical and agricultural industry, eventually threaten the cleaner production process and environment. Magnetic Field (MF) has been a greener and effective technology to control calcium carbonate fouling. However, the effects of MF on composite calcium-silica fouling are still elusive. Therefore, this paper assessed the effect of MF on calcium and silica fouling. We found that MF not only significantly reduce the calcium carbonate fouling, but also obviously decreased the silica fouling. The MF reduced the calcite fouling reached 38.2%-64.3% by changing water quality parameters to trigger the transformation rate of CaCO3 crystal from compact calcite to looser aragonite, as well as increase the unit-cell parameters and chemical bond lengths of calcite and aragonite. The MF also decreased the content of silica fouling (silica and silicate) reached 22.4-46.3% by reducing the concentration of soluble silica and accelerating the flocculation settlement to form large size solid particles in BW. Furthermore, MF broke the synergistic interactions among calcium and silica fouling. In addition, the anti-fouling ability of permanent MF was higher by 12.3-35.1% than electric MF. Overall, these findings demonstrate that MF is an effective and chemical-free technology to control calcium-silica fouling in BWDS, and provide a new perspective for sustainable application of brackish water.
Asunto(s)
Calcio , Dióxido de Silicio , Carbonato de Calcio , Campos Magnéticos , Membranas Artificiales , Aguas SalinasRESUMEN
Poultry processing plants generate large amounts of wastewater in the many steps necessary to provide high quality and safe products. Carcass chilling is one of these steps, where the temperature of the carcass is reduced from 40°C to 4°C, for reducing the growth rate of microorganisms and affecting flavour, texture and appearance. In this operation, carcasses are continually displaced through a series of two tanks (called pre-chiller and chiller) filled with cold water, thus being responsible for a considerable amount of wastewater generation. This work aimed to regenerate the wastewater of the pre-chiller tank employing microfiltration (pore size 0.10 and 0.20â µm) and ultrafiltration (UF; MWCO 10 and 50â kDa) polymeric membranes in bench and pilot scales, with the final purpose of reuse. Membrane performance was evaluated in terms of the capacity of removing the contaminants and producing sufficient permeate flux in different working pressures. Bench-scale UF membrane presented the highest initial permeate flux of 112.1â L/m2h at 200â kPa. The four membranes tested presented good retention of microorganisms, with apparent rejection of up to 100%. Pilot-scale membranes presented better apparent rejection, with retentions above 99% for turbidity, apparent colour and fat content. Moreover, organic matter retention was also very high, up to 94% for chemical oxygen demand and 92% for total organic carbon. The use of membranes seems to be a promising approach for recycling and reuse of poultry pre-chiller wastewater.