Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Pulm Med ; 22(1): 95, 2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35305612

RESUMEN

BACKGROUND: Lung ultrasound (LUS) is a useful tool for assessing the severity of lung disease, without radiation exposure. However, there is little data on the practicality of LUS in assessing the severity of bronchopulmonary dysplasia (BPD) and evaluating short-term clinical outcomes. We adapted a LUS score to evaluate BPD severity and assess the reliability of mLUS score correlated with short-term clinical outcomes. METHODS: Prospective diagnostic accuracy study was designed to enroll preterm infants with gestational age < 34 weeks. Lung ultrasonography was performed at 36 weeks postmenstrual age. The diagnostic and predictive values of new modified lung ultrasound (mLUS) scores based on eight standard sections were compared with classic lung ultrasound (cLUS) scores. RESULTS: A total of 128 infants were enrolled in this cohort, including 30 without BPD; 31 with mild BPD; 23 with moderate BPD and 44 with severe BPD. The mLUS score was significantly correlated with the short-term clinical outcomes, superior to cLUS score. The mLUS score well correlated with moderate and severe BPD (AUC = 0.813, 95% CI 0.739-0.888) and severe BPD (AUC = 0.801, 95% CI 0.728-0.875), which were superior to cLUS score. The ROC analysis of mLUS score to evaluate the other short-term outcomes also showed significant superiority to cLUS score. The optimal cutoff points for mLUS score were 14 for moderate and severe BPD and 16 for severe BPD. CONCLUSIONS: The mLUS score correlates significantly with short-term clinical outcomes and well evaluates these outcomes in preterm infants.


Asunto(s)
Displasia Broncopulmonar , Displasia Broncopulmonar/diagnóstico por imagen , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Pulmón/diagnóstico por imagen , Estudios Prospectivos , Reproducibilidad de los Resultados , Ultrasonografía
2.
Brain Behav Immun Health ; 37: 100745, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38511150

RESUMEN

Preterm birth and its related complications have become more and more common as neonatal medicine advances. The concept of "developmental origins of health and disease" has raised awareness of adverse perinatal events in the development of diseases later in life. To explore this concept, we propose that encephalopathy of prematurity (EoP) as a potential pro-inflammatory early life event becomes a novel risk factor for metabolic diseases in children/adolescents and adulthood. Here, we review epidemiological evidence that links preterm birth to metabolic diseases and discuss possible synergic roles of preterm birth and neuroinflammation from EoP in the development of metabolic diseases. In addition, we explore theoretical underlying mechanisms regarding developmental programming of the energy control system and HPA axis.

3.
Exp Neurol ; 370: 114564, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37806512

RESUMEN

BACKGROUND: Preterm white matter injury (WMI) is the most common brain injury in preterm infants and is associated with long-term adverse neurodevelopmental outcomes. Protein tyrosine phosphatase sigma (PTPσ) was discovered as chondroitin sulfate proteoglycan (CSPG) receptor that played roles in inhibiting myelin regeneration in spinal injury, experimental autoimmune encephalomyelitis, and stroke models. However, the role of PTPσ in perinatal WMI is not well understood. AIMS: This study examines the effect of PTPσ inhibition on neurodevelopmental outcomes, myelination, and neuroinflammation in a mouse model of preterm WMI. MATERIALS AND METHODS: Modified Rice-Vannucci model was performed on postnatal day 3 (P3) C57BL/6 mice. Intracellular Sigma Peptide (ISP) or vehicle was administrated subcutaneously one hour after injury for an additional 14 consecutive days. A battery of behavioral tests was performed to evaluate the short- and long-term effects of ISP on neurobehavioral deficit. Real time qPCR, western blot, immunofluorescence, and transmission electron microscopy were performed to assess white matter development. qPCR and flow cytometry were performed to evaluate neuroinflammation and microglia/macrophage phenotype. RESULTS: The expression of PTPσ was increased after preterm WMI. ISP improved short-term neurological outcomes and ameliorated long-term motor and cognitive function of mice after preterm WMI. ISP promoted oligodendrocyte differentiation, maturation, myelination, and improved microstructure of myelin after preterm WMI. Furthermore, ISP administration fostered a beneficial inflammatory response in the acute phase after preterm WMI, inhibited the infiltration of peripheral macrophages, and promoted anti-inflammatory phenotype of microglia/macrophages. CONCLUSION: PTPσ inhibition can ameliorate neurofunctional deficit, promote white matter development, modulate neuroinflammation and microglia/macrophage phenotype after preterm WMI. Thus, ISP administration may be a potential therapeutic strategy to improve neurodevelopmental outcomes of perinatal WMI.


Asunto(s)
Lesiones Encefálicas , Sustancia Blanca , Recién Nacido , Humanos , Embarazo , Femenino , Animales , Ratones , Proteoglicanos/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Roedores/metabolismo , Enfermedades Neuroinflamatorias , Ratones Endogámicos C57BL , Recien Nacido Prematuro , Péptidos/uso terapéutico , Lesiones Encefálicas/tratamiento farmacológico , Sustancia Blanca/metabolismo
4.
Front Cell Neurosci ; 16: 976002, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204450

RESUMEN

Hypoxic-ischemic (HI) induced perinatal white matter injury (PWMI) is a major cause of neurologic disabilities characterized by selective oligodendroglial death and myelin disruption. Galectin-3 (Gal-3) modulates postnatal subventricular zone gliogenesis and attenuates ischemic injury. However, the association between Gal-3 and myelin formation still remains unclear. In this study, we first perform Gal-3 knockdown (KD) to identify the importance of Gal-3 on myelin formation. Our results show impeded myelin formation, manifested by Olig2/CC1 (+) mature oligodendrocytes number, expression of oligodendroglial maturation-associated markers (MBP and CNPase), and myelin thickness and integrity. Then we perform recombinant Gal-3 (rGal-3) administration by intracerebroventricular injection. Notably, although rGal-3 administration shows no beneficial effect on oligodendrogenesis and myelin formation under normal condition, our results show that rGal-3 administration attenuates cognitive deficits and drives remyelination after PWMI, which are coupled to signs of enhanced myelin resiliency and cognition. Also, our results indicates that the significant increases in substrates for remyelination of rGal-3 administration are accompanied by enhanced Iba-1 (microglia marker)/ Mrc1 (M2 marker) (+) microglia and decreased Iba-1/ iNOS (M1 marker) (+) microglia. Altogether, our data in this research confirm the association between Gal-3 and myelin formation, underscore its position for the capacity for remyelination and restoration of function, and unveils the efficacy of rGal-3 administration with anti-inflammatory phenotype microglia (M2 microglia) activation. Thus, the findings suggest that Gal-3 plays a significant role in myelin formation and remyelination restoration.

5.
Brain Res ; 1766: 147522, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34010609

RESUMEN

Hyaluronan is one of the major components of the neural extracellular matrix (ECM) and provides structural support in physiological conditions. Altered hyaluronan regulation is implicated in the pathogenesis of white matter injury (WMI), such as perinatal WMI, multiple sclerosis (MS), traumatic brain injury (TBI). Early research reported diverse central nervous system (CNS) insults led to accumulated high-molecular-weight (HMW) hyaluronan in hypomyelinating/demyelinating lesions. Furthermore, recent findings have shown an elevated production of hyaluronan fragments in WMI, possibly resulting from HMW hyaluronan degradation. Subsequent in vitro studies identified bioactive hyaluronan fragments with a specific molecular weight (around 2x105 Da) regulating oligodendrocyte precursor cells (OPCs) maturation and myelination/remyelination in WMI. However, it is unclear about the effective hyaluronidases in generating bioactive hyaluronan fragments. Several hyaluronidases are proposed recently. Although PH20 is shown to block OPCs maturation by generating bioactive hyaluronan fragments in vitro, it seems unlikely to play a primary role in WMI with negligible expression levels in vivo. The role of other hyaluronidases on OPCs maturation and myelination/remyelination is still unknown. Other than hyaluronidases, CD44 and Toll-like receptors 2 (TLR2) are also implicated in HMW hyaluronan degradation in WMI. Moreover, recent studies elucidated bioactive hyaluronan fragments interact with TLR4, initiating signaling cascades to mediate myelin basic protein (MBP) transcription. Identifying key factors in hyaluronan actions may provide novel therapeutic targets to promote OPCs maturation and myelination/remyelination in WMI.


Asunto(s)
Ácido Hialurónico/metabolismo , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Remielinización/fisiología , Sustancia Blanca/lesiones , Sustancia Blanca/metabolismo , Animales , Humanos , Oligodendroglía/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda