Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Curr Biol ; 33(3): 597-605.e3, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36693368

RESUMEN

The plant vasculature delivers phloem sap to the growth apices of sink organs, the meristems, via the interconnected sieve elements of the protophloem.1,2,3 In the A. thaliana root meristem, the stem cells form two files of protophloem sieve elements (PPSEs), whose timely differentiation requires a set of positive genetic regulators. In corresponding loss-of-function mutants, signaling of secreted CLAVATA3/EMBRYO SURROUNDING REGION 45 (CLE45) peptide through the BARELY ANY MERISTEM 3 (BAM3) receptor is hyperactive and interferes with PPSE differentiation. This can be mimicked by an external CLE45 application to wild type. Because developing PPSEs express CLE45-BAM3 pathway components from early on until terminal differentiation, it remains unclear how they escape the autocrine inhibitory CLE45 signal. Here, we report that the wild type becomes insensitive to CLE45 treatment on neutral to alkaline pH media, as well as upon simultaneous treatment with a specific proton pump inhibitor at a standard pH of 5.7. We find that these observations can be explained by neither pH-dependent CLE45 uptake nor pH-dependent CLE45 charge. Moreover, pH-dependent perception specifically requires the CLE45 R4 residue and is not observed for the redundant PPSE-specific CLE25 and CLE26 peptides. Finally, pH-dependent CLE45 response in developing PPSEs as opposed to pH-independent response in neighboring cell files indicates that late-developing PPSEs can no longer sense CLE45. This is consistent with an apoplastic acidic to alkaline pH gradient we observed along developing PPSE cell files. In summary, we conclude that developing PPSEs self-organize their transition to differentiation by desensitizing themselves against autocrine CLE45 signaling through an apoplastic pH increase.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Floema/metabolismo , Raíces de Plantas , Meristema/metabolismo , Diferenciación Celular , Péptidos/metabolismo , Percepción , Concentración de Iones de Hidrógeno , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda