Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Plant Dis ; 107(2): 401-412, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35787008

RESUMEN

Heterodera glycines, the soybean cyst nematode (SCN), and fungal pathogen Macrophomina phaseolina are economically important soybean pathogens that may coinfest fields. Resistance remains the most effective management tactic for SCN, and the rhg1-b resistance allele derived from plant introduction 88788 is most commonly deployed in the northern United States. The concomitant effects of SCN and M. phaseolina on soybean performance, as well as the effect of the rhg1-b allele in two different genetic backgrounds, were evaluated in three environments (during 2013 to 2015) and a greenhouse bioassay. Within two soybean populations, half of the lines had the rhg1-b allele, and the other half had the susceptible allele in the backgrounds of the cultivars IA3023 and LD00-3309. Significant interactions between soybean rhg1-b allele and M. phaseolina-infested plots were observed in 2014. In all experiments, initial SCN populations (Pi) and M. phaseolina in roots were associated with reduced soybean yield. SCN reproduction factor (RF = final population/Pi) was affected by SCN Pi, rhg1-b, and genetic background. A background-by-genotype interaction on yield was observed only in 2015, with a stronger rhg1-b effect in the LD00-3309 background, which suggested that the susceptible parent 'IA3023' is tolerant to SCN. SCN female index from greenhouse experiments was compared with field RF, and Lin's concordance and Pearson's correlation coefficients decreased with increasing field SCN Pi in soil. In this study, both SCN and M. phaseolina reduced soybean yield asymptomatically, and the impact of SCN rhg1-b resistance was dependent on SCN virulence but also population density.


Asunto(s)
Glycine max , Tylenchoidea , Animales , Glycine max/genética , Enfermedades de las Plantas/microbiología , Genotipo , Tylenchoidea/genética
2.
Theor Appl Genet ; 135(5): 1797-1810, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35275252

RESUMEN

KEY MESSAGE: Software for high imputation accuracy in soybean was identified. Imputed dataset could significantly reduce the interval of genomic regions controlling traits, thus greatly improve the efficiency of candidate gene identification. Genotype imputation is a strategy to increase marker density of existing datasets without additional genotyping. We compared imputation performance of software BEAGLE 5.0, IMPUTE 5 and AlphaPlantImpute and tested software parameters that may help to improve imputation accuracy in soybean populations. Several factors including marker density, extent of linkage disequilibrium (LD), minor allele frequency (MAF), etc., were examined for their effects on imputation accuracy across different software. Our results showed that AlphaPlantImpute had a higher imputation accuracy than BEAGLE 5.0 or IMPUTE 5 tested in each soybean family, especially if the study progeny were genotyped with an extremely low number of markers. LD extent, MAF and reference panel size were positively correlated with imputation accuracy, a minimum number of 50 markers per chromosome and MAF of SNPs > 0.2 in soybean line were required to avoid a significant loss of imputation accuracy. Using the software, we imputed 5176 soybean lines in the soybean nested mapping population (NAM) with high-density markers of the 40 parents. The dataset containing 423,419 markers for 5176 lines and 40 parents was deposited at the Soybase. The imputed NAM dataset was further examined for the improvement of mapping quantitative trait loci (QTL) controlling soybean seed protein content. Most of the QTL identified were at identical or at similar position based on initial and imputed datasets; however, QTL intervals were greatly narrowed. The resulting genotypic dataset of NAM population will facilitate QTL mapping of traits and downstream applications. The information will also help to improve genotyping imputation accuracy in self-pollinated crops.


Asunto(s)
Glycine max , Sitios de Carácter Cuantitativo , Frecuencia de los Genes , Genotipo , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Glycine max/genética
3.
Theor Appl Genet ; 135(6): 2025-2039, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35381870

RESUMEN

KEY MESSAGE: An epistatic interaction between SCN resistance loci rhg1-a and rhg2 in PI 90763 imparts resistance against virulent SCN populations which can be employed to diversify SCN resistance in soybean cultivars. With more than 95% of the $46.1B soybean market dominated by a single type of genetic resistance, breeding for soybean cyst nematode (SCN)-resistant soybean that can effectively combat the widespread increase in virulent SCN populations presents a significant challenge. Rhg genes (for Resistance to Heterodera glycines) play a key role in resistance to SCN; however, their deployment beyond the use of the rhg1-b allele has been limited. In this study, quantitative trait loci (QTL) were mapped using PI 90763 through two biparental F3:4 recombinant inbred line (RIL) populations segregating for rhg1-a and rhg1-b alleles against a SCN HG type 1.2.5.7 (Race 2) population. QTL located on chromosome 18 (rhg1-a) and chromosome 11 (rhg2) were determined to confer SCN resistance in PI 90763. The rhg2 gene was fine-mapped to a 169-Kbp region pinpointing GmSNAP11 as the strongest candidate gene. We demonstrated a unique epistatic interaction between rhg1-a and rhg2 loci that not only confers resistance to multiple virulent SCN populations. Further, we showed that pyramiding rhg2 with the conventional mode of resistance, rhg1-b, is ineffective against these virulent SCN populations. This highlights the importance of pyramiding rhg1-a and rhg2 to maximize the impact of gene pyramiding strategies toward management of SCN populations virulent on rhg1-b sources of resistance. Our results lay the foundation for the next generation of soybean resistance breeding to combat the number one pathogen of soybean.


Asunto(s)
Quistes , Tylenchoidea , Animales , Resistencia a la Enfermedad/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Glycine max/genética
4.
Mol Plant Microbe Interact ; 34(12): 1433-1445, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34343024

RESUMEN

Soybean cyst nematode (SCN) is the most economically damaging pathogen of soybean and host resistance is a core management strategy. The SCN resistance quantitative trait locus cqSCN-006, introgressed from the wild relative Glycine soja, provides intermediate resistance against nematode populations, including those with increased virulence on the heavily used rhg1-b resistance locus. cqSCN-006 was previously fine-mapped to a genome interval on chromosome 15. The present study determined that Glyma.15G191200 at cqSCN-006, encoding a γ-SNAP, contributes to SCN resistance. CRISPR/Cas9-mediated disruption of the cqSCN-006 allele reduced SCN resistance in transgenic roots. There are no encoded amino acid polymorphisms between resistant and susceptible alleles. However, other cqSCN-006-specific DNA polymorphisms in the Glyma.15G191200 promoter and gene body were identified, and we observed differing induction of γ-SNAP protein abundance at SCN infection sites between resistant and susceptible roots. We identified alternative RNA splice forms transcribed from the Glyma.15G191200 γ-SNAP gene and observed differential expression of the splice forms 2 days after SCN infection. Heterologous overexpression of γ-SNAPs in plant leaves caused moderate necrosis, suggesting that careful regulation of this protein is required for cellular homeostasis. Apparently, certain G. soja evolved quantitative SCN resistance through altered regulation of γ-SNAP. Previous work has demonstrated SCN resistance impacts of the soybean α-SNAP proteins encoded by Glyma.18G022500 (Rhg1) and Glyma.11G234500. The present study shows that a different type of SNAP protein can also impact SCN resistance. Little is known about γ-SNAPs in any system, but the present work suggests a role for γ-SNAPs during susceptible responses to cyst nematodes.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Quistes , Nematodos , Tylenchoidea , Animales , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Glycine max/genética
5.
Proc Natl Acad Sci U S A ; 115(19): E4512-E4521, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29695628

RESUMEN

N-ethylmaleimide sensitive factor (NSF) and α-soluble NSF attachment protein (α-SNAP) are essential eukaryotic housekeeping proteins that cooperatively function to sustain vesicular trafficking. The "resistance to Heterodera glycines 1" (Rhg1) locus of soybean (Glycine max) confers resistance to soybean cyst nematode, a highly damaging soybean pest. Rhg1 loci encode repeat copies of atypical α-SNAP proteins that are defective in promoting NSF function and are cytotoxic in certain contexts. Here, we discovered an unusual NSF allele (Rhg1-associated NSF on chromosome 07; NSFRAN07 ) in Rhg1+ germplasm. NSFRAN07 protein modeling to mammalian NSF/α-SNAP complex structures indicated that at least three of the five NSFRAN07 polymorphisms reside adjacent to the α-SNAP binding interface. NSFRAN07 exhibited stronger in vitro binding with Rhg1 resistance-type α-SNAPs. NSFRAN07 coexpression in planta was more protective against Rhg1 α-SNAP cytotoxicity, relative to WT NSFCh07 Investigation of a previously reported segregation distortion between chromosome 18 Rhg1 and a chromosome 07 interval now known to contain the Glyma.07G195900 NSF gene revealed 100% coinheritance of the NSFRAN07 allele with disease resistance Rhg1 alleles, across 855 soybean accessions and in all examined Rhg1+ progeny from biparental crosses. Additionally, we show that some Rhg1-mediated resistance is associated with depletion of WT α-SNAP abundance via selective loss of WT α-SNAP loci. Hence atypical coevolution of the soybean SNARE-recycling machinery has balanced the acquisition of an otherwise disruptive housekeeping protein, enabling a valuable disease resistance trait. Our findings further indicate that successful engineering of Rhg1-related resistance in plants will require a compatible NSF partner for the resistance-conferring α-SNAP.


Asunto(s)
Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Glycine max/crecimiento & desarrollo , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Nematodos/fisiología , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Animales , Interacciones Huésped-Parásitos , Proteínas Sensibles a N-Etilmaleimida/genética , Enfermedades de las Plantas/parasitología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/parasitología , Polimorfismo de Nucleótido Simple , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Glycine max/genética , Glycine max/parasitología
6.
Plant Dis ; 105(10): 3238-3243, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33449807

RESUMEN

Soybean cyst nematode (SCN) is an important pathogen of soybean causing >$1 billion in yield losses annually in the United States. Planting SCN-resistant soybean cultivars is the primary management strategy. Resistance genes derived from the plant introduction (PI) 88788 (rhg1-b) and PI 548402 (Peking; rhg1-a and Rhg4) are the main types of resistance available in commercial cultivars. The PI 88788 rhg1-b resistance allele is found in the majority of SCN-resistant cultivars in the north central United States. The widespread use of PI 88788 rhg1-b has led to limited options for farmers to rotate resistance sources to manage SCN. Consequently, overreliance on a single type of resistance has resulted in the selection of SCN populations that have adapted to reproduce on these resistant cultivars. Here we evaluated the effectiveness of rotating soybean lines with different combinations of resistance genes to determine the best strategy for combating the widespread increase in virulent SCN and limit future nematode adaptation to resistant cultivars. Eight SCN populations were developed by continuous selection of a virulent SCN field population (Heterodera glycines [HG] type 1.2.5.7) on a single resistance source or in rotation with soybean pyramiding different resistance gene alleles derived from PI 88788 (rhg1-b), PI 437654 (rhg1-a and Rhg4), PI 468916 (cqSCN-006 and cqSCN-007), and PI 567516C (Chr10). SCN population densities were determined for eight generations. HG type tests were conducted after the eighth generation to evaluate population shifts. The continued use of rhg1-b or 006/007 had limited effectiveness for reducing SCN type 1.2.5.7 population density, whereas rotation to the use of rhg1-a/Rhg4 resistance significantly reduced SCN population density but selected for broader SCN virulence (HG type 1.2.3.5.6.7). A rotation of rhg1-a/Rhg4 with a pyramid of rhg1-b/006/007/Chr10 was the most effective combination at both reducing population density and minimizing selection pressure. Our results provide guidance for implementation of a strategic SCN resistance rotation plan to manage the widespread virulence on PI 88788 and sustain the future durability of SCN resistance genes.


Asunto(s)
Quistes , Tylenchoidea , Animales , Enfermedades de las Plantas/genética , Glycine max/genética , Virulencia
7.
Plant Dis ; 104(8): 2068-2073, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32515688

RESUMEN

Soybean production has expanded worldwide including countries in sub-Saharan Africa. Several national and international agencies and research groups have partnered to improve overall performance of soybean breeding stocks and have introduced new germplasm from Brazil and the United States with the goal of developing new high-yielding cultivars. Part of this effort has been to test improved soybean lines/cultivars accumulated from private and public sources in multilocational trials in sub-Saharan Africa. These trials are known as the Pan-African Soybean Variety Trials, and the entries come from both private and public breeding programs. The objective of this research was to evaluate entries in the trials that include commercial cultivars or advanced experimental lines for the incidence and severity of foliar diseases. All trials were planted in December 2018 with six located in Zambia and one in Malawi. Plants were evaluated during the reproductive growth stages using a visual pretransformed severity rating scale. Foliar disease ratings were recorded for three bacterial diseases, six fungal diseases, one oomycete, and viruses. The overall occurrence of most of the diseases was high except for soybean rust and target spot, which were only found at two and one location, respectively. However, disease severity was generally low, although there were differences in disease severity ratings among the entries at some of the locations for brown spot, downy mildew, frogeye leaf spot, red leaf blotch, and soybean rust.


Asunto(s)
Glycine max , Enfermedades de las Plantas , Brasil , Malaui , Estados Unidos , Zambia
9.
Theor Appl Genet ; 131(7): 1541-1552, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29663054

RESUMEN

KEY MESSAGE: Despite numerous challenges, field testing of three sources of genetic resistance to sudden death syndrome of soybean provides information to more effectively improve resistance to this disease in cultivars. Sudden death syndrome (SDS) of soybean [Glycine max (L.) Merrill] is a disease that causes yield loss in soybean growing regions across the USA and worldwide. While several quantitative trait loci (QTL) for SDS resistance have been mapped, studies to further evaluate these QTL are limited. The objective of our research was to map SDS resistance QTL and to test the effect of mapped resistance QTL on foliar symptoms when incorporated into elite soybean backgrounds. We mapped a QTL from Ripley to chromosome 10 (CHR10) and a QTL from PI507531 to chromosomes 1 and 18 (CHR1 and 18). Six populations were then developed to test the following QTL: cqSDS-001, with resistance originating from PI567374, CHR10, CHR1, and CHR18. The populations which segregated for resistant and susceptible QTL alleles were field tested in multiple environments and evaluated for SDS foliar symptoms. While foliar disease development was variable across environments and populations, a significant effect of each QTL on disease was detected within at least one environment. This includes the detection of cqSDS-001 in three genetic backgrounds. The QTL allele from the resistant parents was associated with greater resistance than the susceptible alleles for all QTL and backgrounds with the exception of the allele for CHR18, where the opposite occurred. This study highlights the importance and difficulties of evaluating QTL and the need for multi-year SDS field testing. The information presented in this study can aid breeders in making decisions to improve resistance to SDS.


Asunto(s)
Resistencia a la Enfermedad/genética , Glycine max/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Cruzamientos Genéticos , Fenotipo
10.
Theor Appl Genet ; 131(8): 1729-1740, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29766218

RESUMEN

KEY MESSAGE: Two interactive quantitative trait loci (QTLs) controlled the field resistance to sudden death syndrome (SDS) in soybean. The interaction between them was confirmed. Sudden death syndrome (SDS), caused by Fusarium virguliforme, is a major disease of soybean [Glycine max (L.) Merr.] in the United States. Breeding for soybean resistance to SDS is the most cost-effective method to manage the disease. The objective of this study was to identify and characterize quantitative trait loci (QTLs) underlying field resistance to SDS in a recombinant inbred line population from the cross GD2422 × LD01-5907. This population was genotyped with 1786 polymorphic single nucleotide polymorphisms (SNPs) using SoySNP6 K iSelect BeadChip and evaluated for SDS resistance in a naturally infested field. Four SDS resistance QTLs were mapped on Chromosomes 4, 8, 12 and 18. The resistant parent, LD01-5907, contributed the resistance alleles for the QTLs on Chromosomes 8 and 18 (qSDS-8 and qSDS-18), while the other parent, GD2422, provided the resistance alleles for the QTLs on Chromosomes 4 and 12 (qSDS-4 and qSDS-12). The minor QTL on Chromosome 12 (qSDS-12) is novel. The QTL on Chromosomes 8 and 18 (qSDS-8 and qSDS-18) overlapped with two soybean cyst nematode resistance-related loci, Rhg4 and Rhg1, respectively. A significant interaction between qSDS-8 and qSDS-18 was detected by disease incidence. Individual effects together with the interaction effect explained around 70% of the phenotypic variance. The epistatic interaction of qSDS-8 and qSDS-18 was confirmed by the field performance across multiple years. Furthermore, the resistance alleles at qSDS-8 and qSDS-18 were demonstrated to be recessive. The SNP markers linked to these QTLs will be useful for marker-assisted breeding to enhance the SDS resistance.


Asunto(s)
Resistencia a la Enfermedad/genética , Epistasis Genética , Glycine max/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Alelos , Mapeo Cromosómico , Fusarium/patogenicidad , Ligamiento Genético , Genotipo , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Glycine max/microbiología
11.
BMC Bioinformatics ; 18(1): 586, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-29281959

RESUMEN

BACKGROUND: Genotyping-by-sequencing (GBS), a method to identify genetic variants and quickly genotype samples, reduces genome complexity by using restriction enzymes to divide the genome into fragments whose ends are sequenced on short-read sequencing platforms. While cost-effective, this method produces extensive missing data and requires complex bioinformatics analysis. GBS is most commonly used on crop plant genomes, and because crop plants have highly variable ploidy and repeat content, the performance of GBS analysis software can vary by target organism. Here we focus our analysis on soybean, a polyploid crop with a highly duplicated genome, relatively little public GBS data and few dedicated tools. RESULTS: We compared the performance of five GBS pipelines using low-coverage Illumina sequence data from three soybean populations. To address issues identified with existing methods, we developed GB-eaSy, a GBS bioinformatics workflow that incorporates widely used genomics tools, parallelization and automation to increase the accuracy and accessibility of GBS data analysis. Compared to other GBS pipelines, GB-eaSy rapidly and accurately identified the greatest number of SNPs, with SNP calls closely concordant with whole-genome sequencing of selected lines. Across all five GBS analysis platforms, SNP calls showed unexpectedly low convergence but generally high accuracy, indicating that the workflows arrived at largely complementary sets of valid SNP calls on the low-coverage data analyzed. CONCLUSIONS: We show that GB-eaSy is approximately as good as, or better than, other leading software solutions in the accuracy, yield and missing data fraction of variant calling, as tested on low-coverage genomic data from soybean. It also performs well relative to other solutions in terms of the run time and disk space required. In addition, GB-eaSy is built from existing open-source, modular software packages that are regularly updated and commonly used, making it straightforward to install and maintain. While GB-eaSy outperformed other individual methods on the datasets analyzed, our findings suggest that a comprehensive approach integrating the results from multiple GBS bioinformatics pipelines may be the optimal strategy to obtain the largest, most highly accurate SNP yield possible from low-coverage polyploid sequence data.


Asunto(s)
Productos Agrícolas/genética , Técnicas de Genotipaje/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Programas Informáticos , Flujo de Trabajo , Genoma de Planta , Genotipo , Polimorfismo de Nucleótido Simple/genética , Poliploidía , Glycine max/genética , Secuenciación Completa del Genoma
12.
Plant J ; 88(1): 143-153, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27310152

RESUMEN

Copy number variation (CNV) is implicated in important traits in multiple crop plants, but can be challenging to genotype using conventional methods. The Rhg1 locus of soybean, which confers resistance to soybean cyst nematode (SCN), is a CNV of multiple 31.2-kb genomic units each containing four genes. Reliable, high-throughput methods to quantify Rhg1 and other CNVs for selective breeding were developed. The CNV genotyping assay described here uses a homeologous gene copy within the paleopolyploid soybean genome to provide the internal control for a single-tube TaqMan copy number assay. Using this assay, CNV in breeding populations can be tracked with high precision. We also show that extensive CNV exists within Fayette, a released, inbred SCN-resistant soybean cultivar with a high copy number at Rhg1 derived from a single donor parent. Copy number at Rhg1 is therefore unstable within a released variety over a relatively small number of generations. Using this assay to select for individuals with altered copy number, plants were obtained with both increased copy number and increased SCN resistance relative to control plants. Thus, CNV genotyping technologies can be used as a new type of marker-assisted selection to select for desirable traits in breeding populations, and to control for undesirable variation within cultivars.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Glycine max/genética , Glycine max/parasitología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Resistencia a la Enfermedad/genética , Genotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Theor Appl Genet ; 130(11): 2315-2326, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28795235

RESUMEN

KEY MESSAGE: Evaluation of seed protein alleles in soybean populations showed that an increase in protein concentration is generally associated with a decrease in oil concentration and yield. Soybean [Glycine max (L.) Merrill] meal is one of the most important plant-based protein sources in the world. Developing cultivars high in seed protein concentration and seed yield is a difficult task because the traits have an inverse relationship. Over two decades ago, a protein quantitative trait loci (QTL) was mapped on chromosome (chr) 20, and this QTL has been mapped to the same position in several studies and given the confirmed QTL designation cqSeed protein-003. In addition, the wp allele on chr 2, which confers pink flower color, has also been associated with increased protein concentration. The objective of our study was to evaluate the effect of cqSeed protein-003 and the wp locus on seed composition and agronomic traits in elite soybean backgrounds adapted to the Midwestern USA. Segregating populations of isogenic lines were developed to test the wp allele and the chr 20 high protein QTL alleles from Danbaekkong (PI619083) and Glycine soja PI468916 at cqSeed protein-003. An increase in protein concentration and decrease in yield were generally coupled with the high protein alleles at cqSeed protein-003 across populations, whereas the effects of wp on protein concentration and yield were variable. These results not only demonstrate the difficulty in developing cultivars with increased protein and yield but also provide information for breeding programs seeking to improve seed composition and agronomic traits simultaneously.


Asunto(s)
Glycine max/genética , Proteínas de Almacenamiento de Semillas/genética , Semillas/química , Alelos , Cruzamientos Genéticos , Marcadores Genéticos , Fitomejoramiento , Sitios de Carácter Cuantitativo , Semillas/genética
14.
Genome Res ; 23(10): 1663-74, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23739894

RESUMEN

Cytosine DNA methylation is one avenue for passing information through cell divisions. Here, we present epigenomic analyses of soybean recombinant inbred lines (RILs) and their parents. Identification of differentially methylated regions (DMRs) revealed that DMRs mostly cosegregated with the genotype from which they were derived, but examples of the uncoupling of genotype and epigenotype were identified. Linkage mapping of methylation states assessed from whole-genome bisulfite sequencing of 83 RILs uncovered widespread evidence for local methylQTL. This epigenomics approach provides a comprehensive study of the patterns and heritability of methylation variants in a complex genetic population over multiple generations, paving the way for understanding how methylation variants contribute to phenotypic variation.


Asunto(s)
Citosina/metabolismo , Metilación de ADN , ADN de Plantas/metabolismo , Epigenómica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Glycine max/genética , Arabidopsis/genética , Arabidopsis/metabolismo , División Celular , Mapeo Cromosómico , Elementos Transponibles de ADN , ADN de Plantas/genética , ADN Recombinante , Epigénesis Genética , Genes de Plantas , Variación Genética , Genotipo , Endogamia , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Análisis de Secuencia , Glycine max/metabolismo
15.
Plant Cell Environ ; 39(5): 1058-67, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26565891

RESUMEN

Crop biomass production is a function of the efficiencies with which sunlight can be intercepted by the canopy and then converted into biomass. Conversion efficiency has been identified as a target for improvement to enhance crop biomass and yield. Greater conversion efficiency in modern soybean [Glycine max (L.) Merr.] cultivars was documented in recent field trials, and this study explored the physiological basis for this observation. In replicated field trials conducted over three successive years, diurnal leaf gas exchange and photosynthetic CO2 response curves were measured in 24 soybean cultivars with year of release dates (YOR) from 1923 to 2007. Maximum photosynthetic capacity, mesophyll conductance and nighttime respiration have not changed consistently with cultivar release date. However, daily carbon gain was periodically greater in more recently released cultivars compared with older cultivars. Our analysis suggests that this difference in daily carbon gain primarily occurred when stomatal conductance and soil water content were high. There was also evidence for greater chlorophyll content and greater sink capacity late in the growing season in more recently released soybean varieties. Better understanding of the mechanisms that have improved conversion efficiency in the past may help identify new, promising targets for the future.


Asunto(s)
Glycine max/crecimiento & desarrollo , Glycine max/fisiología , Fotosíntesis , Fitomejoramiento , Carbono/metabolismo , Respiración de la Célula , Clorofila/metabolismo , Ritmo Circadiano , Gases/metabolismo , Células del Mesófilo/metabolismo , Fotones , Ribulosa-Bifosfato Carboxilasa/metabolismo , Almidón/metabolismo
16.
Theor Appl Genet ; 129(12): 2403-2412, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27581541

RESUMEN

KEY MESSAGE: Evaluations of soybean populations showed that both Rhg1 copy number and type were important in determining soybean cyst nematode resistance with higher copy number within Rhg1 type conferring greater resistance. Rhg1 and Rhg4 are important loci conferring resistance to soybean cyst nematode (SCN; Heterodera glycines). Alleles at Rhg1 have been shown to vary for copy number and type and the importance of this variation in conferring resistance is not well defined. The repeat number ranges from one to 10 and there are three variant repeat sequence types [plant introduction (PI) 88788-'Fayette' type (F), 'Peking' type (P) and Williams 82 type (W)] across diverse soybean germplasm. We developed populations segregating for Rhg1 copy number and type and Rhg4 allele type to investigate the effect of these factors and their interaction on SCN resistance. F2 plants from each cross were evaluated for the segregation of Rhg1 and Rhg4 alleles and for SCN reproduction after infesting plants with HG type 2.5.7 and HG type 7 populations. Within repeat types, an increase in repeat number was associated with greater resistance. The P type Rhg1 showed an advantage over F + W type for SCN population HG type 2.5.7 but this was not observed for SCN HG type 7. While plants with P type Rhg1 required Rhg4 to achieve full resistance, Rhg4 did not increase resistance in the background of F + W type Rhg1 repeat. This study demonstrates the importance of both Rhg1 copy number and type in determining resistance and can assist soybean breeders in determining what alleles would best fit their breeding goals.


Asunto(s)
Resistencia a la Enfermedad/genética , Dosificación de Gen , Glycine max/genética , Enfermedades de las Plantas/genética , Tylenchoidea , Alelos , Animales , ADN de Plantas/genética , Genes de Plantas , Repeticiones de Microsatélite , Enfermedades de las Plantas/parasitología , Polimorfismo de Nucleótido Simple , Glycine max/parasitología
17.
Mol Ecol ; 24(8): 1774-91, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25735447

RESUMEN

The soybean cyst nematode (SCN) resistance locus Rhg1 is a tandem repeat of a 31.2 kb unit of the soybean genome. Each 31.2-kb unit contains four genes. One allele of Rhg1, Rhg1-b, is responsible for protecting most US soybean production from SCN. Whole-genome sequencing was performed, and PCR assays were developed to investigate allelic variation in sequence and copy number of the Rhg1 locus across a population of soybean germplasm accessions. Four distinct sequences of the 31.2-kb repeat unit were identified, and some Rhg1 alleles carry up to three different types of repeat unit. The total number of copies of the repeat varies from 1 to 10 per haploid genome. Both copy number and sequence of the repeat correlate with the resistance phenotype, and the Rhg1 locus shows strong signatures of selection. Significant linkage disequilibrium in the genome outside the boundaries of the repeat allowed the Rhg1 genotype to be inferred using high-density single nucleotide polymorphism genotyping of 15 996 accessions. Over 860 germplasm accessions were found likely to possess Rhg1 alleles. The regions surrounding the repeat show indications of non-neutral evolution and high genetic variability in populations from different geographic locations, but without evidence of fixation of the resistant genotype. A compelling explanation of these results is that balancing selection is in operation at Rhg1.


Asunto(s)
Variaciones en el Número de Copia de ADN , Resistencia a la Enfermedad/genética , Glycine max/genética , Enfermedades de las Plantas/genética , Alelos , Animales , Genes de Plantas , Genética de Población , Genotipo , Desequilibrio de Ligamiento , Modelos Genéticos , Nematodos , Fenotipo , Enfermedades de las Plantas/parasitología , Polimorfismo de Nucleótido Simple , Selección Genética , Glycine max/parasitología
18.
Theor Appl Genet ; 128(3): 387-96, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25504467

RESUMEN

KEY MESSAGE: Asian soybean rust (ASR) resistance gene Rpp2 has been fine mapped into a 188.1 kb interval on Glyma.Wm82.a2, which contains a series of plant resistance ( R ) genes. Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrihizi Syd. & P. Syd., is a serious disease in major soybean [Glycine max (L.) Merr.] production countries worldwide and causes yield losses up to 75 %. Defining the exact chromosomal position of ASR resistance genes is critical for improving the effectiveness of marker-assisted selection (MAS) for resistance and for cloning these genes. The objective of this study was to fine map the ASR resistance gene Rpp2 from the plant introduction (PI) 230970. Rpp2 was previously mapped within a 12.9-cM interval on soybean chromosome 16. The fine mapping was initiated by identifying recombination events in F2 and F3 plants using simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers that flank the gene. Seventeen recombinant plants were identified and then tested with additional genetic markers saturating the gene region to localize the positions of each recombination. The progeny of these selected plants were tested for resistance to ASR and with SSR markers resulting in the mapping of Rpp2 to a 188.1 kb interval on the Williams 82 reference genome (Glyma.Wm82.a2). Twelve genes including ten toll/interleukin-1 receptor (TIR)-nucleotide-binding site (NBS)-leucine-rich repeat (LRR) genes were predicted to exist in this interval on the Glyma.Wm82.a2.v1 gene model map. Eight of these ten genes were homologous to the Arabidopsis TIR-NBS-LRR gene AT5G17680.1. The identified SSR and SNP markers close to Rpp2 and the candidate gene information presented in this study will be significant resources for MAS and gene cloning research.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Genes de Plantas , Glycine max/genética , Basidiomycota , Cruzamiento , ADN de Plantas/genética , Genes Dominantes , Marcadores Genéticos , Haplotipos , Repeticiones de Microsatélite , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Glycine max/microbiología
19.
J Exp Bot ; 65(12): 3311-21, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24790116

RESUMEN

Soybean (Glycine max Merr.) is the world's most widely grown leguminous crop and an important source of protein and oil for food and feed. Soybean yields have increased substantially throughout the past century, with yield gains widely attributed to genetic advances and improved cultivars as well as advances in farming technology and practice. Yet, the physiological mechanisms underlying the historical improvements in soybean yield have not been studied rigorously. In this 2-year experiment, 24 soybean cultivars released between 1923 and 2007 were grown in field trials. Physiological improvements in the efficiencies by which soybean canopies intercepted light (εi), converted light energy into biomass (εc), and partitioned biomass into seed (εp) were examined. Seed yield increased by 26.5kg ha(-1) year(-1), and the increase in seed yield was driven by improvements in all three efficiencies. Although the time to canopy closure did not change in historical soybean cultivars, extended growing seasons and decreased lodging in more modern lines drove improvements in εi. Greater biomass production per unit of absorbed light resulted in improvements in εc. Over 84 years of breeding, soybean seed biomass increased at a rate greater than total aboveground biomass, resulting in an increase in εp. A better understanding of the physiological basis for yield gains will help to identify targets for soybean improvement in the future.


Asunto(s)
Cruzamiento , Metabolismo Energético , Glycine max/fisiología , Luz , Fotosíntesis , Agricultura , Biomasa , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiología , Glycine max/genética , Glycine max/crecimiento & desarrollo
20.
Theor Appl Genet ; 127(5): 1251-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24705575

RESUMEN

Soybean [Glycine max (L.) Merr.] continues to be plagued by the soybean aphid (Aphis glycines Matsumura: SA) in North America. New soybean resistance sources are needed to combat the four identified SA biotypes. The objectives of this study were to determine the inheritance of SA resistance in PI 587732 and to map resistance gene(s). For this study, 323 F2 and 214 F3 plants developed from crossing PI 587732 to two susceptible genotypes were challenged with three SA biotypes and evaluated with genetic markers. Choice tests showed that resistance to SA Biotype 1 in the first F2 population was controlled by a gene in the Rag1 region on chromosome 7, while resistance to SA Biotype 2 in the second population was controlled by a gene in the Rag2 region on chromosome 13. When 134 F3 plants segregating in both the Rag1 and Rag2 regions were tested with a 1:1 mixture of SA Biotypes 1 and 2, the Rag2 region and an interaction between the Rag1 and Rag2 regions were significantly associated with the resistance. Based on the results of the non-choice tests, the resistance gene in the Rag1 region in PI 587732 may be a different allele or gene from Rag1 from Dowling because the PI 587732 gene showed antibiosis type resistance to SA Biotype 2 while Rag1 from Dowling did not. The two SA resistance loci and genetic marker information from this study will be useful in increasing diversity of SA resistance sources and marker-assisted selection for soybean breeding programs.


Asunto(s)
Áfidos , Genes de Plantas , Glycine max/genética , Animales , Cruzamiento , Mapeo Cromosómico , Cruzamientos Genéticos , Marcadores Genéticos , Genotipo , Glycine max/parasitología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda