Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 185(18): 3408-3425.e29, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985322

RESUMEN

Genetically encoded voltage indicators are emerging tools for monitoring voltage dynamics with cell-type specificity. However, current indicators enable a narrow range of applications due to poor performance under two-photon microscopy, a method of choice for deep-tissue recording. To improve indicators, we developed a multiparameter high-throughput platform to optimize voltage indicators for two-photon microscopy. Using this system, we identified JEDI-2P, an indicator that is faster, brighter, and more sensitive and photostable than its predecessors. We demonstrate that JEDI-2P can report light-evoked responses in axonal termini of Drosophila interneurons and the dendrites and somata of amacrine cells of isolated mouse retina. JEDI-2P can also optically record the voltage dynamics of individual cortical neurons in awake behaving mice for more than 30 min using both resonant-scanning and ULoVE random-access microscopy. Finally, ULoVE recording of JEDI-2P can robustly detect spikes at depths exceeding 400 µm and report voltage correlations in pairs of neurons.


Asunto(s)
Microscopía , Neuronas , Animales , Interneuronas , Ratones , Microscopía/métodos , Neuronas/fisiología , Fotones , Vigilia
2.
Cell ; 179(7): 1590-1608.e23, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31835034

RESUMEN

Optical interrogation of voltage in deep brain locations with cellular resolution would be immensely useful for understanding how neuronal circuits process information. Here, we report ASAP3, a genetically encoded voltage indicator with 51% fluorescence modulation by physiological voltages, submillisecond activation kinetics, and full responsivity under two-photon excitation. We also introduce an ultrafast local volume excitation (ULoVE) method for kilohertz-rate two-photon sampling in vivo with increased stability and sensitivity. Combining a soma-targeted ASAP3 variant and ULoVE, we show single-trial tracking of spikes and subthreshold events for minutes in deep locations, with subcellular resolution and with repeated sampling over days. In the visual cortex, we use soma-targeted ASAP3 to illustrate cell-type-dependent subthreshold modulation by locomotion. Thus, ASAP3 and ULoVE enable high-speed optical recording of electrical activity in genetically defined neurons at deep locations during awake behavior.


Asunto(s)
Encéfalo/fisiología , Proteínas Activadoras de GTPasa/genética , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Optogenética/métodos , Ritmo Teta , Vigilia , Potenciales de Acción , Animales , Encéfalo/metabolismo , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Femenino , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Ratas , Ratas Sprague-Dawley , Carrera
3.
Nat Methods ; 19(1): 100-110, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34949810

RESUMEN

Optical recording of neuronal activity in three-dimensional (3D) brain circuits at cellular and millisecond resolution in vivo is essential for probing information flow in the brain. While random-access multiphoton microscopy permits fast optical access to neuronal targets in three dimensions, the method is challenged by motion artifacts when recording from behaving animals. Therefore, we developed three-dimensional custom-access serial holography (3D-CASH). Built on a fast acousto-optic light modulator, 3D-CASH performs serial sampling at 40 kHz from neurons at freely selectable 3D locations. Motion artifacts are eliminated by targeting each neuron with a size-optimized pattern of excitation light covering the cell body and its anticipated displacement field. Spike rates inferred from GCaMP6f recordings in visual cortex of awake mice tracked the phase of a moving bar stimulus with higher spike correlation between intra compared to interlaminar neuron pairs. 3D-CASH offers access to the millisecond correlation structure of in vivo neuronal activity in 3D microcircuits.


Asunto(s)
Holografía/instrumentación , Holografía/métodos , Imagenología Tridimensional/métodos , Corteza Visual/citología , Animales , Conducta Animal , Prueba de Esfuerzo , Femenino , Fluorescencia , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones Endogámicos C57BL , Neuronas/fisiología , Estimulación Luminosa , Imagen de Lapso de Tiempo , Corteza Visual/fisiología
5.
Proc Natl Acad Sci U S A ; 114(2): 328-333, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28003462

RESUMEN

Studying how the membrane modulates ion channel and transporter activity is challenging because cells actively regulate membrane properties, whereas existing in vitro systems have limitations, such as residual solvent and unphysiologically high membrane tension. Cell-sized giant unilamellar vesicles (GUVs) would be ideal for in vitro electrophysiology, but efforts to measure the membrane current of intact GUVs have been unsuccessful. In this work, two challenges for obtaining the "whole-GUV" patch-clamp configuration were identified and resolved. First, unless the patch pipette and GUV pressures are precisely matched in the GUV-attached configuration, breaking the patch membrane also ruptures the GUV. Second, GUVs shrink irreversibly because the membrane/glass adhesion creating the high-resistance seal (>1 GΩ) continuously pulls membrane into the pipette. In contrast, for cell-derived giant plasma membrane vesicles (GPMVs), breaking the patch membrane allows the GPMV contents to passivate the pipette surface, thereby dynamically blocking membrane spreading in the whole-GMPV mode. To mimic this dynamic passivation mechanism, beta-casein was encapsulated into GUVs, yielding a stable, high-resistance, whole-GUV configuration for a range of membrane compositions. Specific membrane capacitance measurements confirmed that the membranes were truly solvent-free and that membrane tension could be controlled over a physiological range. Finally, the potential for ion transport studies was tested using the model ion channel, gramicidin, and voltage-clamp fluorometry measurements were performed with a voltage-dependent fluorophore/quencher pair. Whole-GUV patch-clamping allows ion transport and other voltage-dependent processes to be studied while controlling membrane composition, tension, and shape.

6.
Proc Natl Acad Sci U S A ; 110(40): 16223-8, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24046366

RESUMEN

Climbing fibers, the projections from the inferior olive to the cerebellar cortex, carry sensorimotor error and clock signals that trigger motor learning by controlling cerebellar Purkinje cell synaptic plasticity and discharge. Purkinje cells target the deep cerebellar nuclei, which are the output of the cerebellum and include an inhibitory GABAergic projection to the inferior olive. This pathway identifies a potential closed loop in the olivo-cortico-nuclear network. Therefore, sets of Purkinje cells may phasically control their own climbing fiber afferents. Here, using in vitro and in vivo recordings, we describe a genetically modified mouse model that allows the specific optogenetic control of Purkinje cell discharge. Tetrode recordings in the cerebellar nuclei demonstrate that focal stimulations of Purkinje cells strongly inhibit spatially restricted sets of cerebellar nuclear neurons. Strikingly, such stimulations trigger delayed climbing-fiber input signals in the stimulated Purkinje cells. Therefore, our results demonstrate that Purkinje cells phasically control the discharge of their own olivary afferents and thus might participate in the regulation of cerebellar motor learning.


Asunto(s)
Cerebelo/citología , Vías Eferentes/citología , Núcleo Olivar/citología , Células de Purkinje/fisiología , Animales , Channelrhodopsins , Inmunohistoquímica , Ratones , Ratones Transgénicos , Optogenética , Prueba de Desempeño de Rotación con Aceleración Constante
7.
J Neurosci ; 34(28): 9418-31, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-25009273

RESUMEN

The principal neurons of the cerebellar nuclei (CN), the sole output of the olivo-cerebellar system, receive a massive inhibitory input from Purkinje cells (PCs) of the cerebellar cortex. Morphological evidence suggests that CN principal cells are also contacted by inhibitory interneurons, but the properties of this connection are unknown. Using transgenic, tracing, and immunohistochemical approaches in mice, we show that CN interneurons form a large heterogeneous population with GABA/glycinergic phenotypes, distinct from GABAergic olive-projecting neurons. CN interneurons are found to contact principal output neurons, via glycine receptor (GlyR)-enriched synapses, virtually devoid of the main GABA receptor (GABAR) subunits α1 and γ2. Those clusters account for 5% of the total number of inhibitory receptor clusters on principal neurons. Brief optogenetic stimulations of CN interneurons, through selective expression of channelrhodopsin 2 after viral-mediated transfection of the flexed gene in GlyT2-Cre transgenic mice, evoked fast IPSCs in principal cells. GlyR activation accounted for 15% of interneuron IPSC amplitude, while the remaining current was mediated by activation of GABAR. Surprisingly, small GlyR clusters were also found at PC synapses onto principal CN neurons in addition to α1 and γ2 GABAR subunits. However, GlyR activation was found to account for <3% of the PC inhibitory synaptic currents evoked by electrical stimulation. This work establishes CN glycinergic neurons as a significant source of inhibition to CN principal cells, forming contacts molecularly distinct from, but functionally similar to, Purkinje cell synapses. Their impact on CN output, motor learning, and motor execution deserves further investigation.


Asunto(s)
Núcleos Cerebelosos/citología , Neuronas GABAérgicas/citología , Glicina/metabolismo , Interneuronas/citología , Inhibición Neural/fisiología , Células de Purkinje/citología , Ácido gamma-Aminobutírico/metabolismo , Animales , Núcleos Cerebelosos/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Ratones , Ratones Transgénicos , Neurotransmisores/metabolismo , Células de Purkinje/metabolismo
8.
Opt Express ; 23(22): 28191-205, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26561090

RESUMEN

Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.

9.
J Neurosci ; 33(30): 12430-46, 2013 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-23884948

RESUMEN

The function of inhibitory interneurons within brain microcircuits depends critically on the nature and properties of their excitatory synaptic drive. Golgi cells (GoCs) of the cerebellum inhibit cerebellar granule cells (GrCs) and are driven both by feedforward mossy fiber (mf) and feedback GrC excitation. Here, we have characterized GrC inputs to GoCs in rats and mice. We show that, during sustained mf discharge, synapses from local GrCs contribute equivalent charge to GoCs as mf synapses, arguing for the importance of the feedback inhibition. Previous studies predicted that GrC-GoC synapses occur predominantly between parallel fibers (pfs) and apical GoC dendrites in the molecular layer (ML). By combining EM and Ca(2+) imaging, we now demonstrate the presence of functional synaptic contacts between ascending axons (aa) of GrCs and basolateral dendrites of GoCs in the granular layer (GL). Immunohistochemical quantification estimates these contacts to be ∼400 per GoC. Using Ca(2+) imaging to identify synaptic inputs, we show that EPSCs from aa and mf contacts in basolateral dendrites display similarly fast kinetics, whereas pf inputs in the ML exhibit markedly slower kinetics as they undergo strong filtering by apical dendrites. We estimate that approximately half of the local GrC contacts generate fast EPSCs, indicating their basolateral location in the GL. We conclude that GrCs, through their aa contacts onto proximal GoC dendrites, define a powerful feedback inhibitory circuit in the GL.


Asunto(s)
Axones/fisiología , Cerebelo/citología , Cerebelo/fisiología , Sinapsis/fisiología , Potenciales de Acción/fisiología , Animales , Axones/ultraestructura , Calcio/metabolismo , Dendritas/fisiología , Dendritas/ultraestructura , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Retroalimentación Fisiológica/fisiología , Femenino , Proteínas Fluorescentes Verdes/genética , Interneuronas/fisiología , Interneuronas/ultraestructura , Masculino , Ratones , Ratones Transgénicos , Microscopía Electrónica , Fibras Nerviosas/fisiología , Fibras Nerviosas/ultraestructura , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar
10.
Neuroscience ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897374

RESUMEN

The cerebellum is known to control the proper balance of isometric muscular contractions that maintain body posture. Current optogenetic manipulations of the cerebellar cortex output, however, have focused on ballistic body movements, examining movement initiation or perturbations. Here, by optogenetic stimulations of cerebellar Purkinje cells, which are the output of the cerebellar cortex, we evaluate body posture maintenance. By sequential analysis of body movement, we dissect the effect of optogenetic stimulation into a directly induced movement that is then followed by a compensatory reflex to regain body posture. We identify a module in the medial part of the anterior vermis which, through multiple muscle tone regulation, is involved in postural anti-gravity maintenance of the body. Moreover, we report an antero-posterior and medio-lateral functional segregation over the vermal lobules IV/V/VI. Taken together our results open new avenues for better understanding of the modular functional organization of the cerebellar cortex and its role in postural anti-gravity maintenance.

11.
J Neurosci ; 32(13): 4632-44, 2012 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22457509

RESUMEN

Inhibitory synapses display a great diversity through varying combinations of presynaptic GABA and glycine release and postsynaptic expression of GABA and glycine receptor subtypes. We hypothesized that increased flexibility offered by this dual transmitter system might serve to tune the inhibitory phenotype to the properties of afferent excitatory synaptic inputs in individual cells. Vestibulocerebellar unipolar brush cells (UBC) receive a single glutamatergic synapse from a mossy fiber (MF), which makes them an ideal model to study excitatory-inhibitory interactions. We examined the functional phenotypes of mixed inhibitory synapses formed by Golgi interneurons onto UBCs in rat slices. We show that glycinergic IPSCs are present in all cells. An additional GABAergic component of large amplitude is only detected in a subpopulation of UBCs. This GABAergic phenotype is strictly anti-correlated with the expression of type II, but not type I, metabotropic glutamate receptors (mGluRs) at the MF synapse. Immunohistochemical stainings and agonist applications show that global UBC expression of glycine and GABA(A) receptors matches the pharmacological profile of IPSCs. Paired recordings of Golgi cells and UBCs confirm the postsynaptic origin of the inhibitory phenotype, including the slow kinetics of glycinergic components. These results strongly suggest the presence of a functional coregulation of excitatory and inhibitory phenotypes at the single-cell level. We propose that slow glycinergic IPSCs may provide an inhibitory tone, setting the gain of the MF to UBC relay, whereas large and fast GABAergic IPSCs may in addition control spike timing in mGluRII-negative UBCs.


Asunto(s)
Cerebelo/fisiología , Ácido Glutámico/fisiología , Inhibición Neural/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Transmisión Sináptica/fisiología , Animales , Cerebelo/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Agonistas del GABA/farmacología , Agonistas del GABA/fisiología , Antagonistas del GABA/farmacología , Glicina/fisiología , Glicinérgicos/farmacología , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Interneuronas/fisiología , Ácido Kaínico/farmacología , Masculino , Fibras Nerviosas/fisiología , Inhibición Neural/efectos de los fármacos , Neuronas/fisiología , Ratas , Ratas Wistar , Receptores de Glicina/antagonistas & inhibidores , Receptores de Glicina/metabolismo , Receptores de Glutamato Metabotrópico/biosíntesis , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/fisiología
12.
J Neurosci ; 32(20): 6878-93, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22593057

RESUMEN

The cerebellar cortex coordinates movements and maintains balance by modifying motor commands as a function of sensory-motor context, which is encoded by mossy fiber (MF) activity. MFs exhibit a wide range of activity, from brief precisely timed high-frequency bursts, which encode discrete variables such as whisker stimulation, to low-frequency sustained rate-coded modulation, which encodes continuous variables such as head velocity. While high-frequency MF inputs have been shown to activate granule cells (GCs) effectively, much less is known about sustained low-frequency signaling through the GC layer, which is impeded by a hyperpolarized resting potential and strong GABA(A)-mediated tonic inhibition of GCs. Here we have exploited the intrinsic MF network of unipolar brush cells to activate GCs with sustained low-frequency asynchronous MF inputs in rat cerebellar slices. We find that low-frequency MF input modulates the intrinsic firing of Purkinje cells, and that this signal transmission through the GC layer requires synaptic activation of Mg²âº-block-resistant NMDA receptors (NMDARs) that are likely to contain the GluN2C subunit. Slow NMDAR conductances sum temporally to contribute approximately half the MF-GC synaptic charge at hyperpolarized potentials. Simulations of synaptic integration in GCs show that the NMDAR and slow spillover-activated AMPA receptor (AMPAR) components depolarize GCs to a similar extent. Moreover, their combined depolarizing effect enables the fast quantal AMPAR component to trigger action potentials at low MF input frequencies. Our results suggest that the weak Mg²âº block of GluN2C-containing NMDARs enables transmission of low-frequency MF signals through the input layer of the cerebellar cortex.


Asunto(s)
Corteza Cerebelosa/fisiología , Magnesio/farmacología , Receptores de N-Metil-D-Aspartato/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Corteza Cerebelosa/efectos de los fármacos , Corteza Cerebelosa/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Glicina/análogos & derivados , Glicina/farmacología , Técnicas In Vitro , Masculino , Fibras Nerviosas/fisiología , Neuronas/fisiología , Células de Purkinje/fisiología , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Resorcinoles/farmacología , Transmisión Sináptica/efectos de los fármacos
13.
Front Cell Neurosci ; 16: 1060189, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687523

RESUMEN

Neurotransmitter content is deemed the most basic defining criterion for neuronal classes, contrasting with the intercellular heterogeneity of many other molecular and functional features. Here we show, in the adult mouse brain, that neurotransmitter content variegation within a neuronal class is a component of its functional heterogeneity. Golgi cells (GoCs), the well-defined class of cerebellar interneurons inhibiting granule cells (GrCs), contain cytosolic glycine, accumulated by the neuronal transporter GlyT2, and GABA in various proportions. By performing acute manipulations of cytosolic GABA and glycine supply, we find that competition of glycine with GABA reduces the charge of IPSC evoked in GrCs and, more specifically, the amplitude of a slow component of the IPSC decay. We then pair GrCs recordings with optogenetic stimulations of single GoCs, which preserve the intracellular transmitter mixed content. We show that the strength and decay kinetics of GrCs IPSCs, which are entirely mediated by GABAA receptors, are negatively correlated to the presynaptic expression of GlyT2 by GoCs. We isolate a slow spillover component of GrCs inhibition that is also affected by the expression of GlyT2, leading to a 56% decrease in relative charge. Our results support the hypothesis that presynaptic loading of glycine negatively impacts the GABAergic transmission in mixed interneurons, most likely through a competition for vesicular filling. We discuss how the heterogeneity of neurotransmitter supply within mixed interneurons like the GoC class may provide a presynaptic mechanism to tune the gain of microcircuits such as the granular layer, thereby expanding the realm of their possible dynamic behaviors.

14.
J Neurosci ; 29(31): 9668-82, 2009 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-19657020

RESUMEN

T-type voltage-gated calcium channels are expressed in the dendrites of many neurons, although their functional interactions with postsynaptic receptors and contributions to synaptic signaling are not well understood. We combine electrophysiological and ultrafast two-photon calcium imaging to demonstrate that mGluR1 activation potentiates cerebellar Purkinje cell Ca(v)3.1 T-type currents via a G-protein- and tyrosine-phosphatase-dependent pathway. Immunohistochemical and electron microscopic investigations on wild-type and Ca(v)3.1 gene knock-out animals show that Ca(v)3.1 T-type channels are preferentially expressed in Purkinje cell dendritic spines and colocalize with mGluR1s. We further demonstrate that parallel fiber stimulation induces fast subthreshold calcium signaling in dendritic spines and that the synaptic Ca(v)3.1-mediated calcium transients are potentiated by mGluR1 selectively during bursts of excitatory parallel fiber inputs. Our data identify a new fast calcium signaling pathway in Purkinje cell dendritic spines triggered by short burst of parallel fiber inputs and mediated by T-type calcium channels and mGluR1s.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Señalización del Calcio/fisiología , Espinas Dendríticas/fisiología , Células de Purkinje/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Envejecimiento , Animales , Canales de Calcio Tipo T/genética , Línea Celular , Espinas Dendríticas/ultraestructura , Humanos , Técnicas In Vitro , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células de Purkinje/ultraestructura , Ratas , Ratas Wistar , Sinapsis/fisiología
15.
J Neurosci ; 27(14): 3823-38, 2007 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-17409247

RESUMEN

Cerebellar unipolar brush cells (UBCs) are glutamatergic interneurons that receive direct input from vestibular afferents in the form of a unique excitatory synapse on their dendritic brush. UBCs constitute independent relay lines for vestibular signals, and their inherent properties most likely determine how vestibular activity is encoded by the cerebellar cortex. We now demonstrate that UBCs are bimodal cells; they can either fire high-frequency bursts of action potentials when stimulated from hyperpolarized potentials or discharge tonically during sustained depolarizations. The two functional states can be triggered by physiological-like activity of the excitatory input and are encoded by distinct Ca2+-signaling systems. By combining complementary strategies, consisting of molecular and electrophysiological analysis and of ultrafast acousto-optical deflector-based two-photon imaging, we unraveled the identity and the subcellular localization of the Ca2+ conductances activating in each mode. Fast inactivating T-type Ca2+ channels produce low-threshold spikes, which trigger the high-frequency bursts and generate powerful Ca2+ transients in the brush and, to a much lesser extent, in the soma. The tonic firing mode is encoded by a signalization system principally composed of L-type channels. Ca2+ influx during tonic firing produces a linear representation of the spike rate of the cell in the form of a widespread and sustained Ca2+ concentration increase and regulates cellular excitability via BK potassium channels. The bimodal firing pattern of UBCs may underlie different coding strategies of the vestibular input by the cerebellum, thus likely increasing the computational power of this structure.


Asunto(s)
Potenciales de Acción/fisiología , Canales de Calcio Tipo L/fisiología , Canales de Calcio Tipo T/fisiología , Cerebelo/fisiología , Interneuronas/fisiología , Animales , Cerebelo/citología , Cerebelo/metabolismo , Cerebelo/ultraestructura , Interneuronas/citología , Interneuronas/ultraestructura , Microvellosidades/fisiología , Ratas , Ratas Wistar
16.
J Neurosci Methods ; 173(2): 259-70, 2008 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-18634822

RESUMEN

Two-photon microscopy offers the promise of monitoring brain activity at multiple locations within intact tissue. However, serial sampling of voxels has been difficult to reconcile with millisecond timescales characteristic of neuronal activity. This is due to the conflicting constraints of scanning speed and signal amplitude. The recent use of acousto-optic deflector scanning to implement random-access multiphoton microscopy (RAMP) potentially allows to preserve long illumination dwell times while sampling multiple points-of-interest at high rates. However, the real-life abilities of RAMP microscopy regarding sensitivity and phototoxicity issues, which have so far impeded prolonged optical recordings at high frame rates, have not been assessed. Here, we describe the design, implementation and characterisation of an optimised RAMP microscope. We demonstrate the application of the microscope by monitoring calcium transients in Purkinje cells and cortical pyramidal cell dendrites and spines. We quantify the illumination constraints imposed by phototoxicity and show that stable continuous high-rate recordings can be obtained. During these recordings the fluorescence signal is large enough to detect spikes with a temporal resolution limited only by the calcium dye dynamics, improving upon previous techniques by at least an order of magnitude.


Asunto(s)
Potenciales de Acción/fisiología , Encéfalo/fisiología , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Neuronas/fisiología , Neurofisiología/métodos , Óptica y Fotónica/instrumentación , Animales , Encéfalo/citología , Señalización del Calcio/fisiología , Corteza Cerebelosa/citología , Corteza Cerebelosa/fisiología , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Espinas Dendríticas/fisiología , Espinas Dendríticas/ultraestructura , Colorantes Fluorescentes/normas , Citometría de Imagen/instrumentación , Citometría de Imagen/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Neuronas/citología , Neurofisiología/instrumentación , Técnicas de Cultivo de Órganos , Células de Purkinje/citología , Células de Purkinje/fisiología , Células Piramidales/citología , Células Piramidales/fisiología , Ratas , Ratas Wistar , Coloración y Etiquetado/métodos , Transmisión Sináptica/fisiología
17.
Cell Rep ; 24(6): 1536-1549, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30089264

RESUMEN

Climbing fibers (CFs) provide instructive signals driving cerebellar learning, but mechanisms causing the variable CF responses in Purkinje cells (PCs) are not fully understood. Using a new experimentally validated PC model, we unveil the ionic mechanisms underlying CF-evoked distinct spike waveforms on different parts of the PC. We demonstrate that voltage can gate both the amplitude and the spatial range of CF-evoked Ca2+ influx by the availability of K+ currents. This makes the energy consumed during a complex spike (CS) also voltage dependent. PC dendrites exhibit inhomogeneous excitability with individual branches as computational units for CF input. The variability of somatic CSs can be explained by voltage state, CF activation phase, and instantaneous CF firing rate. Concurrent clustered synaptic inputs affect CSs by modulating dendritic responses in a spatially precise way. The voltage- and branch-specific CF responses can increase dendritic computational capacity and enable PCs to actively integrate CF signals.


Asunto(s)
Fibras Nerviosas/fisiología , Células de Purkinje/fisiología , Humanos
18.
Sci Rep ; 8(1): 13768, 2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30213968

RESUMEN

Optogenetics provides tools to control afferent activity in brain microcircuits. However, this requires optical methods that can evoke asynchronous and coordinated activity within neuronal ensembles in a spatio-temporally precise way. Here we describe a light patterning method, which combines MHz acousto-optic beam steering and adjustable low numerical aperture Gaussian beams, to achieve fast 2D targeting in scattering tissue. Using mossy fiber afferents to the cerebellar cortex as a testbed, we demonstrate single fiber optogenetic stimulation with micron-scale lateral resolution, >100 µm depth-penetration and 0.1 ms spiking precision. Protracted spatio-temporal patterns of light delivered by our illumination system evoked sustained asynchronous mossy fiber activity with excellent repeatability. Combining optical and electrical stimulations, we show that the cerebellar granular layer performs nonlinear integration, whereby sustained mossy fiber activity provides a permissive context for the transmission of salient inputs, enriching combinatorial views on mossy fiber pattern separation.


Asunto(s)
Luz , Fibras Nerviosas/fisiología , Optogenética/métodos , Células de Purkinje/fisiología , Corteza Sensoriomotora/fisiología , Animales , Corteza Cerebelosa/fisiología , Estimulación Eléctrica , Electrofisiología/métodos , Femenino , Masculino , Ratones , Ratones Transgénicos , Modelos Neurológicos , Fotones , Análisis Espacio-Temporal
19.
J Neurosci ; 25(28): 6490-8, 2005 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-16014710

RESUMEN

Corelease of GABA and glycine by mixed neurons is a prevalent mode of inhibitory transmission in the vertebrate hindbrain. However, little is known of the functional organization of mixed inhibitory networks. Golgi cells, the main inhibitory interneurons of the cerebellar granular layer, have been shown to contain GABA and glycine. We show here that, in the vestibulocerebellum, Golgi cells contact both granule cells and unipolar brush cells, which are excitatory relay interneurons for vestibular afferences. Whereas IPSCs in granule cells are mediated by GABA(A) receptors only, Golgi cell inhibition of unipolar brush cells is dominated by glycinergic currents. We further demonstrate that a single Golgi cell can perform pure GABAergic inhibition of granule cells and pure glycinergic inhibition of unipolar brush cells. This specialization results from the differential expression of GABA(A) and glycine receptors by target cells and not from a segregation of GABA and glycine in presynaptic terminals. Thus, postsynaptic selection of coreleased fast transmitters is used in the CNS to increase the diversity of individual neuronal outputs and achieve target-specific signaling in mixed inhibitory networks.


Asunto(s)
Corteza Cerebelosa/citología , Glicina/metabolismo , Interneuronas/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción , Animales , Potenciales Evocados/fisiología , Antagonistas de Receptores de GABA-A , Microscopía Confocal , Microscopía Fluorescente , Modelos Neurológicos , Técnicas de Placa-Clamp , Piridazinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/análisis , Receptores de Glicina/análisis , Receptores de Glicina/antagonistas & inhibidores , Estricnina/farmacología , Sinapsis/metabolismo
20.
Elife ; 52016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27642013

RESUMEN

Synaptic currents display a large degree of heterogeneity of their temporal characteristics, but the functional role of such heterogeneities remains unknown. We investigated in rat cerebellar slices synaptic currents in Unipolar Brush Cells (UBCs), which generate intrinsic mossy fibers relaying vestibular inputs to the cerebellar cortex. We show that UBCs respond to sinusoidal modulations of their sensory input with heterogeneous amplitudes and phase shifts. Experiments and modeling indicate that this variability results both from the kinetics of synaptic glutamate transients and from the diversity of postsynaptic receptors. While phase inversion is produced by an mGluR2-activated outward conductance in OFF-UBCs, the phase delay of ON UBCs is caused by a late rebound current resulting from AMPAR recovery from desensitization. Granular layer network modeling indicates that phase dispersion of UBC responses generates diverse phase coding in the granule cell population, allowing climbing-fiber-driven Purkinje cell learning at arbitrary phases of the vestibular input.


Asunto(s)
Corteza Cerebelosa/fisiología , Fármacos actuantes sobre Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Fibras Nerviosas/fisiología , Red Nerviosa/fisiología , Receptores de Glutamato/metabolismo , Vestíbulo del Laberinto/fisiología , Potenciales de Acción , Animales , Modelos Neurológicos , Ratas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda