Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Bioscience ; 72(4): 372-386, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35370478

RESUMEN

Ecosystem management and governance of cross-scale dependent systems require integrating knowledge about ecological connectivity in its multiple forms and scales. Although scientists, managers, and policymakers are increasingly recognizing the importance of connectivity, governmental organizations may not be currently equipped to manage ecosystems with strong cross-boundary dependencies. Managing the different aspects of connectivity requires building social connectivity to increase the flow of information, as well as the capacity to coordinate planning, funding, and actions among both formal and informal governance bodies. We use estuaries in particular the San Francisco Estuary, in California, in the United States, as examples of cross-scale dependent systems affected by many intertwined aspects of connectivity. We describe the different types of estuarine connectivity observed in both natural and human-affected states and discuss the human dimensions of restoring beneficial physical and ecological processes. Finally, we provide recommendations for policy, practice, and research on how to restore functional connectivity to estuaries.

2.
Mol Ecol ; 30(17): 4173-4188, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34166550

RESUMEN

Local adaptation can occur when spatially separated populations are subjected to contrasting environmental conditions. Historically, understanding the genetic basis of adaptation has been difficult, but increased availability of genome-wide markers facilitates studies of local adaptation in non-model organisms of conservation concern. The pygmy rabbit (Brachylagus idahoensis) is an imperiled lagomorph that relies on sagebrush for forage and cover. This reliance has led to widespread population declines following reductions in the distribution of sagebrush, leading to geographic separation between populations. In this study, we used >20,000 single nucleotide polymorphisms, genotype-environment association methods, and demographic modeling to examine neutral genetic variation and local adaptation in the pygmy rabbit in Nevada and California. We identified 308 loci as outliers, many of which had functional annotations related to metabolism of plant secondary compounds. Likewise, patterns of spatial variation in outlier loci were correlated with landscape and climatic variables including proximity to streams, sagebrush cover, and precipitation. We found that populations in the Mono Basin of California probably diverged from other Great Basin populations during late Pleistocene climate oscillations, and that this region is adaptively differentiated from other regions in the southern Great Basin despite limited gene flow and low effective population size. Our results demonstrate that peripherally isolated populations can maintain adaptive divergence.


Asunto(s)
Lagomorpha , Adaptación Fisiológica/genética , Animales , Flujo Génico , Genética de Población , Genotipo , Polimorfismo de Nucleótido Simple/genética , Densidad de Población , Conejos
3.
Oecologia ; 185(3): 437-452, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28936643

RESUMEN

Spatial and temporal environmental variability can lead to variation in selection pressures across a landscape. Strategies for coping with environmental heterogeneity range from specialized phenotypic responses to a narrow range of conditions to generalist strategies that function under a range of conditions. Here, we ask how mean climate and climate variation at individual sites and across a species' range affect the specialist-generalist spectrum of germination strategies exhibited by 10 arid land forbs. We investigated these relationships using climate data for the western United States, occurrence records from herbaria, and germination trials with field-collected seeds, and predicted that generalist strategies would be most common in species that experience a high degree of climate variation or occur over a wide range of conditions. We used two metrics to describe variation in germination strategies: (a) selectivity (did seeds require specific cues to germinate?) and (b) population-level variation (did populations differ in their responses to germination cues?) in germination displayed by each species. Species exhibited distinct germination strategies, with some species demonstrating as much among-population variation as we observed among species. Modeling efforts suggested that generalist strategies evolve in response to higher spatial variation in actual evapotranspiration at a local scale and in available water in the spring and annual precipitation at a range-wide scale. Describing the conditions that lead to variation in early life-history traits is important for understanding the evolution of diversity in natural systems, as well as the possible responses of individual species to global climate change.


Asunto(s)
Cambio Climático , Embryophyta/crecimiento & desarrollo , Germinación/fisiología , Latencia en las Plantas/fisiología , Estaciones del Año , Semillas/fisiología
4.
Glob Chang Biol ; 19(11): 3502-15, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23821586

RESUMEN

Understanding how climate change may influence forest carbon (C) budgets requires knowledge of forest growth relationships with regional climate, long-term forest succession, and past and future disturbances, such as wildfires and timber harvesting events. We used a landscape-scale model of forest succession, wildfire, and C dynamics (LANDIS-II) to evaluate the effects of a changing climate (A2 and B1 IPCC emissions; Geophysical Fluid Dynamics Laboratory General Circulation Models) on total forest C, tree species composition, and wildfire dynamics in the Lake Tahoe Basin, California, and Nevada. The independent effects of temperature and precipitation were assessed within and among climate models. Results highlight the importance of modeling forest succession and stand development processes at the landscape scale for understanding the C cycle. Due primarily to landscape legacy effects of historic logging of the Comstock Era in the late 1880s, C sequestration may continue throughout the current century, and the forest will remain a C sink (Net Ecosystem Carbon Balance > 0), regardless of climate regime. Climate change caused increases in temperatures limited simulated C sequestration potential because of augmented fire activity and reduced establishment ability of subalpine and upper montane trees. Higher temperatures influenced forest response more than reduced precipitation. As the forest reached its potential steady state, the forest could become C neutral or a C source, and climate change could accelerate this transition. The future of forest ecosystem C cycling in many forested systems worldwide may depend more on major disturbances and landscape legacies related to land use than on projected climate change alone.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Incendios , Árboles , California , Modelos Teóricos , Nevada , Tracheophyta/crecimiento & desarrollo , Árboles/crecimiento & desarrollo
5.
PLoS One ; 18(2): e0267263, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36763674

RESUMEN

One of the defining features of the Anthropocene is eroding ecosystem services, decreases in biodiversity, and overall reductions in the abundance of once-common organisms, including many insects that play innumerable roles in natural communities and agricultural systems that support human society. It is now clear that the preservation of insects cannot rely solely on the legal protection of natural areas far removed from the densest areas of human habitation. Instead, a critical challenge moving forward is to intelligently manage areas that include intensively farmed landscapes, such as the Central Valley of California. Here we attempt to meet this challenge with a tool for modeling landscape connectivity for insects (with pollinators in particular in mind) that builds on available information including lethality of pesticides and expert opinion on insect movement. Despite the massive fragmentation of the Central Valley, we find that connectivity is possible, especially utilizing the restoration or improvement of agricultural margins, which (in their summed area) exceed natural areas. Our modeling approach is flexible and can be used to address a wide range of questions regarding both changes in land cover as well as changes in pesticide application rates. Finally, we highlight key steps that could be taken moving forward and the great many knowledge gaps that could be addressed in the field to improve future iterations of our modeling approach.


Asunto(s)
Ecosistema , Polinización , Animales , Humanos , Insectos , Biodiversidad , Agricultura , California
6.
Mov Ecol ; 11(1): 20, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020241

RESUMEN

Animals select habitats based on food, water, space, and cover. Each of those components are essential to the ability of an individual to survive and reproduce in a particular habitat. Selection of resources is linked to reproductive fitness and individuals likely vary in how they select resources relative to their reproductive state: during pregnancy, while provisioning young when nutritional needs of the mother are high, but offspring are vulnerable to predation, or if they lose young to mortality. We investigated the effects of reproductive state on selection of resources by maternal female desert bighorn sheep (Ovis canadensis nelsoni) by comparing selection during the last trimester of gestation, following parturition when females were provisioning dependent young, and if the female lost an offspring. We captured, and recaptured each year, 32 female bighorn sheep at Lone Mountain, Nevada, during 2016-2018. Captured females were fit with GPS collars and those that were pregnant received vaginal implant transmitters. We used a Bayesian approach to estimate differences in selection between females provisioning and not provisioning offspring, as well as the length of time it took for females with offspring to return levels of selection similar to that observed prior to parturition. Females that were not provisioning offspring selected areas with higher risk of predation, but greater nutritional resources than those that were provisioning dependent young. When females were provisioning young immediately following parturition, females selected areas that were safe from predators, but had lower nutritional resources. Females displayed varying rates of return to selection strategies associated with access to nutritional resources as young grew and became more agile and less dependent on mothers. We observed clear and substantial shifts in selection of resources associated with reproductive state, and females exhibited tradeoffs in favor of areas that were safer from predators when provisioning dependent young despite loss of nutritional resources to support lactation. As young grew and became less vulnerable to predators, females returned to levels of selection that provided access to nutritional resources to restore somatic reserves lost during lactation.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda