Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Commun ; 15(1): 5504, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951496

RESUMEN

Exposure to high and low ambient temperatures increases the risk of neonatal mortality, but the contribution of climate change to temperature-related neonatal deaths is unknown. We use Demographic and Health Survey (DHS) data (n = 40,073) from 29 low- and middle-income countries to estimate the temperature-related burden of neonatal deaths between 2001 and 2019 that is attributable to climate change. We find that across all countries, 4.3% of neonatal deaths were associated with non-optimal temperatures. Climate change was responsible for 32% (range: 19-79%) of heat-related neonatal deaths, while reducing the respective cold-related burden by 30% (range: 10-63%). Climate change has impacted temperature-related neonatal deaths in all study countries, with most pronounced climate-induced losses from increased heat and gains from decreased cold observed in countries in sub-Saharan Africa. Future increases in global mean temperatures are expected to exacerbate the heat-related burden, which calls for ambitious mitigation and adaptation measures to safeguard the health of newborns.


Asunto(s)
Cambio Climático , Países en Desarrollo , Mortalidad Infantil , Humanos , Recién Nacido , Países en Desarrollo/estadística & datos numéricos , Mortalidad Infantil/tendencias , Lactante , Femenino , Calor/efectos adversos , Masculino , Frío/efectos adversos , Temperatura , África del Sur del Sahara/epidemiología , Encuestas Epidemiológicas
2.
Sci Total Environ ; 823: 153832, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35151734

RESUMEN

The health impacts of global climate change mitigation will affect local populations differently. However, most co-benefits analyses have been done at a global level, with relatively few studies providing local level results. We aimed to quantify the local health impacts due to fine particles (PM2.5) under the governance arrangements embedded in the Shared Socioeconomic Pathways (SSPs1-5) under two greenhouse gas concentration scenarios (Representative Concentration Pathways (RCPs) 2.6 and 8.5) in local populations of Mozambique, India, and Spain. We simulated the SSP-RCP scenarios using the Global Change Analysis Model, which was linked to the TM5-FASST model to estimate PM2.5 levels. PM2.5 levels were calibrated with local measurements. We used comparative risk assessment methods to estimate attributable premature deaths due to PM2.5 linking local population and mortality data with PM2.5-mortality relationships from the literature, and incorporating population projections under the SSPs. PM2.5 attributable burdens in 2050 differed across SSP-RCP scenarios, and sensitivity of results across scenarios varied across populations. Future attributable mortality burden of PM2.5 was highly sensitive to assumptions about how populations will change according to SSP. SSPs reflecting high challenges for adaptation (SSPs 3 and 4) consistently resulted in the highest PM2.5 attributable burdens mid-century. Our analysis of local PM2.5 attributable premature deaths under SSP-RCP scenarios in three local populations highlights the importance of both socioeconomic development and climate policy in reducing the health burden from air pollution. Sensitivity of future PM2.5 mortality burden to SSPs was particularly evident in low- and middle- income country settings due either to high air pollution levels or dynamic populations.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Cambio Climático , Mortalidad Prematura , Material Particulado/análisis
3.
Environ Int ; 146: 106170, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33395923

RESUMEN

BACKGROUND: South Asia is highly vulnerable to climate change and is projected to experience some of the highest increases in average annual temperatures throughout the century. Although the adverse impacts of ambient temperature on human health have been extensively documented in the literature, only a limited number of studies have focused on populations in this region. OBJECTIVES: Our aim was to systematically review the current state and quality of available evidence on the direct relationship between ambient temperature and heat waves and all-cause mortality in South Asia. METHODS: The databases Pubmed, Web of Science, Scopus and Embase were searched from 1990 to 2020 for relevant observational quantitative studies. We applied the Navigation Guide methodology to assess the strength of the evidence and performed a meta-analysis based on a novel approach that allows for combining nonlinear exposure-response associations without access to data from individual studies. RESULTS: From the 6,759 screened papers, 27 were included in the qualitative synthesis and five in a meta-analysis. Studies reported an association of all-cause mortality with heat wave episodes and both high and low daily temperatures. The meta-analysis showed a U-shaped pattern, with increasing mortality for both high and low temperatures, but a statistically significant association was found only at higher temperatures - above 31° C for lag 0-1 days and above 34° C for lag 0-13 days. Effects were found to vary with cause of death, age, sex, location (urban vs. rural), level of education and socio-economic status, but the profile of vulnerabilities was somewhat inconsistent and based on a limited number of studies. Overall, the strength of the evidence for ambient temperature as a risk factor for all-cause mortality was judged as limited and for heat wave episodes as inadequate. CONCLUSIONS: The evidence base on temperature impacts on mortality in South Asia is limited due to the small number of studies, their skewed geographical distribution and methodological weaknesses. Understanding the main determinants of the temperature-mortality association as well as how these may evolve in the future in a dynamic region such as South Asia will be an important area for future research. Studies on viable adaptation options to high temperatures for a region that is a hotspot for climate vulnerability, urbanisation and population growth are also needed.


Asunto(s)
Frío , Calor , Asia/epidemiología , Cambio Climático , Humanos , Mortalidad , Temperatura
4.
Environ Int ; 146: 106236, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33161201

RESUMEN

Goals and pathways to achieve sustainable urban development have multiple interlinkages with human health and wellbeing. However, these interlinkages have not been examined in depth in recent discussions on urban sustainability and global urban science. This paper fills that gap by elaborating in detail the multiple links between urban sustainability and human health and by mapping research gaps at the interface of health and urban sustainability sciences. As researchers from a broad range of disciplines, we aimed to: 1) define the process of urbanization, highlighting distinctions from related concepts to support improved conceptual rigour in health research; 2) review the evidence linking health with urbanization, urbanicity, and cities and identify cross-cutting issues; and 3) highlight new research approaches needed to study complex urban systems and their links with health. This novel, comprehensive knowledge synthesis addresses issue of interest across multiple disciplines. Our review of concepts of urban development should be of particular value to researchers and practitioners in the health sciences, while our review of the links between urban environments and health should be of particular interest to those outside of public health. We identify specific actions to promote health through sustainable urban development that leaves no one behind, including: integrated planning; evidence-informed policy-making; and monitoring the implementation of policies. We also highlight the critical role of effective governance and equity-driven planning in progress towards sustainable, healthy, and just urban development.


Asunto(s)
Crecimiento Sostenible , Remodelación Urbana , Ciudades , Humanos , Desarrollo Sostenible , Salud Urbana , Urbanización
5.
Sci Total Environ ; 707: 136114, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-31863998

RESUMEN

Characterizing personal exposure to air temperature is critical to understanding exposure measurement error in epidemiologic studies using fixed-site exposure data and to identify strategies to protect public health. To date, no study evaluating personal air temperature in the general population has been conducted in a low-and-middle income country. We used data from the CHAI study consisting of 50 adults monitored in up to six non-consecutive 24 h sessions in peri-urban south India. We quantified the agreement and association between fixed-site ambient and personal air temperature, and identified predictors of personal air temperature based on housing assessment, self-reported, GPS, remote sensing, and wearable camera data. Mean (SD) daytime (6 am-10 pm) average personal air temperature was 31.2 (2.6) °C and mean nighttime (10 pm-6 am) average temperature was 28.8 (2.8) °C. Agreement between average personal air and fixed-site ambient temperatures was limited, especially at night when personal air temperatures were underestimated by fixed-site temperatures (MBE = -5.6 °C). The proportion of average personal nighttime temperature variability explained by ambient fixed-site temperatures was moderate (R2mar = 0.39); daytime associations were stronger for women (R2mar = 0.51) than for men (R2mar = 0.3). Other predictors of average nighttime personal air temperature included residential altitude, ceiling height, and household income. Predictors of average daytime personal air temperature included roof materials, GPS-tracked altitude, time working in agriculture (for women), and time travelling (for men). No biomass cooking, urban heat island, or greenspace effects were identified. R2mar between ambient fixed-site and personal air temperature indicate that ambient fixed-site temperature is only a moderately useful proxy of personal air temperature in the context of peri-urban India. Our findings suggest that people living in houses at lower altitude, with lower ceiling height and asbestos roofing sheets might be more vulnerable to heat. We also identified households with higher income, women working in agriculture and men with long commutes as disproportionately exposed to high temperatures.


Asunto(s)
Exposición a Riesgos Ambientales , Adulto , Contaminantes Atmosféricos , Ciudades , Monitoreo del Ambiente , Femenino , Calor , Humanos , India , Masculino , Temperatura
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda