Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Chembiochem ; 24(10): e202200805, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-36825431

RESUMEN

Cancer vaccines are based on a vaccinology strategy whereby the patient's immune system is harnessed to induce a specific immune response to kill cancer cells and comprises two categories: prophylactic and therapeutic. Glycoprotein mucin 1 (MUC1), which is overexpressed and poorly glycosylated on cancer cells, is one of the most promising candidates for the development of new cancer vaccines. However, it should be noted that mucin-like glycopeptides are poorly immunogenic and unable to elicit effective and long-lasting immune responses. Therefore, MUC1-derived tumor antigens need to be conjugated with immune activators. This review focuses on the synthesis of MUC1 glycopeptides, provides an overview of recently advanced designs of vaccines based on MUC1, and compares the advantages and disadvantages of the various strategies devised to date.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Mucina-1 , Glicopéptidos , Neoplasias/tratamiento farmacológico , Inmunidad
2.
Molecules ; 28(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37570614

RESUMEN

Controlling the stereoselectivity of 1,2-cis glycosylation is one of the most challenging tasks in the chemical synthesis of glycans. There are various 1,2-cis glycosides in nature, such as α-glucoside and ß-mannoside in glycoproteins, glycolipids, proteoglycans, microbial polysaccharides, and bioactive natural products. In the structure of polysaccharides such as α-glucan, 1,2-cis α-glucosides were found to be the major linkage between the glucopyranosides. Various regioisomeric linkages, 1→3, 1→4, and 1→6 for the backbone structure, and 1→2/3/4/6 for branching in the polysaccharide as well as in the oligosaccharides were identified. To achieve highly stereoselective 1,2-cis glycosylation, including α-glucosylation, a number of strategies using inter- and intra-molecular methodologies have been explored. Recently, Zn salt-mediated cis glycosylation has been developed and applied to the synthesis of various 1,2-cis linkages, such as α-glucoside and ß-mannoside, via the 1,2-cis glycosylation pathway and ß-galactoside 1,4/6-cis induction. Furthermore, the synthesis of various structures of α-glucans has been achieved using the recent progressive stereoselective 1,2-cis glycosylation reactions. In this review, recent advances in stereoselective 1,2-cis glycosylation, particularly focused on α-glucosylation, and their applications in the construction of linear and branched α-glucans are summarized.


Asunto(s)
Glucanos , Polisacáridos , Glicosilación , Glucanos/química , Glucósidos , Manósidos , Estereoisomerismo
3.
J Org Chem ; 86(23): 16901-16915, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34797079

RESUMEN

A direct, efficient, and versatile glycosylation methodology promises the systematic synthesis of oligosaccharides and glycoconjugates in a streamlined fashion like the synthesis of medium to long-chain nucleotides and peptides. The development of a generally applicable approach for the construction of 1,2-cis-glycosidic bond with controlled stereoselectivity remains a major challenge, especially for the synthesis of ß-mannosides. Here, we report a direct mannosylation strategy mediated by ZnI2, a mild Lewis acid, for the highly stereoselective construction of 1,2-cis-ß linkages employing easily accessible 4,6-O-tethered mannosyl trichloroacetimidate donors. The versatility and effectiveness of this strategy were demonstrated with successful ß-mannosylation of a wide variety of alcohol acceptors, including complex natural products, amino acids, and glycosides. Through iteratively performing ZnI2-mediated mannosylation with the chitobiosyl azide acceptor followed by site-selective deprotection of the mannosylation product, the novel methodology enables the modular synthesis of the key intermediate trisaccharide with Man-ß-(1 → 4)-GlcNAc-ß-(1 → 4)-GlcNAc linkage for N-glycan synthesis. Theoretical investigations with density functional theory calculations delved into the mechanistic details of this ß-selective mannosylation and elucidated two zinc cations' essential roles as the activating agent of the donor and the principal mediator of the cis-directing intermolecular interaction.


Asunto(s)
Yoduros , Zinc , Glicosilación , Humanos , Manósidos , Oligosacáridos
4.
J Org Chem ; 85(8): 5536-5558, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32212661

RESUMEN

Polymers of glucose, the most abundant and one of the biologically important natural products, named glucans are widely present in fungi, bacteria, mammals, and plants with various anomeric configurations and glycosidic linkages. Because of their structural diversity, the unified strategy for the assembly of pure glucans is yet to be developed. Herein, we describe a general strategy that is applicable to construction of all types of glucans by exploiting a bimodal glycosyl donor equipped with C2-o-TsNHbenzyl ether (TAB), which enables stereocontrolled synthesis of both α- and ß-glycosides by switching reaction conditions.


Asunto(s)
Productos Biológicos , Glucanos , Glucosa , Glicósidos , Glicosilación
5.
Org Biomol Chem ; 18(41): 8467-8473, 2020 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-33063071

RESUMEN

Rhodopsin-like G protein-coupled receptor (GPCR) GPR55 is attracting attention as a pharmaceutical target, because of its relationship with various physiological and pathological events. Although GPR55 was initially deorphanized as a cannabinoid receptor, lysophosphatidylinositol (LPI) is now widely perceived to be an endogenous ligand of GPR55. Recently, lysophosphatidyl-ß-d-glucoside (LPGlc) has been found to act on GPR55 to repel dorsal root ganglion (DRG) neurons. In this study, we designed and synthesized various LPGlc analogues having the squaryldiamide group as potential agonists of GPR55. By the axon turning assay, several analogues exhibited similar activities to that of LPGlc. These results will provide valuable information for understanding the mode of action of LPGlc and its analogues and for the discovery of potent and selective antagonists or agonists of GPR55.


Asunto(s)
Receptores de Cannabinoides
6.
Org Biomol Chem ; 12(42): 8542-9, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25238086

RESUMEN

One of the hallmarks of iterative polyketide synthases (PKSs) is the programming mechanism which is essential for the generation of structurally diverse polyketide products. In partially reducing iterative PKSs (PR-PKSs), the programming mechanism is mainly dictated by the ketoreductase (KR) domain. The KR domain contributes to the programming of PR-PKSs through selective reduction of polyketide intermediates. How the KR domain achieves the selective ketoreduction remains to be fully understood. In this study, we found that the KR domain of the (R)-mellein-synthesizing PR-PKS SACE5532 functions as a B-type KR domain to generate (R)-hydroxyl functionalities. Comparative studies of the KR domains of SACE5532 and NcsB suggested that the two KR domains have distinct substrate preferences towards simple N-acetylcysteamine thioester (SNAC) substrates. We further found that the substrate preference of KRSACE5532 can be switched by swapping several motifs with KRNcsB, and that swapping of the same motifs in the full length SACE5532 resulted in a reprogramming of the PKS. Together, the results advance our understanding of the programming of iterative PR-PKSs by providing new support to the hypothesis that the programmed ketoreduction is accomplished by differential recognition of polyketide intermediates.


Asunto(s)
Sintasas Poliquetidas/metabolismo , Saccharopolyspora/enzimología , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Sintasas Poliquetidas/química , Estructura Terciaria de Proteína , Saccharopolyspora/química , Saccharopolyspora/metabolismo , Estereoisomerismo , Especificidad por Sustrato
7.
Angew Chem Int Ed Engl ; 53(40): 10742-6, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25112885

RESUMEN

Facile 4π conrotatory imino-Nazarov cyclization of a 1-aminopentadienyl cation generated from condensation an aldehyde and secondary aniline in the presence of a catalytic amount of a Lewis acid has been developed. Silver(I)-catalyzed intramolecular arene trapping of the resulting cyclic oxyallyl cation leads to formation of tricyclic indoline-fused cyclopentanone. The use of lanthanide salts allows transformation after the initial trapping to afford tetrahydroquinoline-fused cyclopentenone in a concise manner.


Asunto(s)
Ciclopentanos/síntesis química , Indoles/síntesis química , Quinolinas/síntesis química , Aminas/química , Catálisis , Cationes/química , Ciclización , Ciclopentanos/química , Indoles/química , Ácidos de Lewis/química , Quinolinas/química , Plata/química , Estereoisomerismo
8.
Beilstein J Org Chem ; 10: 1325-32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24991285

RESUMEN

A highly stereoselective BF3∙OEt2-promoted tandem hydroamination/glycosylation on glycal scaffolds has been developed to form propargyl 3-tosylamino-2,3-dideoxysugars in a one-pot manner. Subsequent construction of multivalent 3-tosylamino-2,3-dideoxyneoglycoconjugates with potential biochemical applications was presented herein involving click conjugations as the key reaction step. The copper-catalyzed regioselective click reaction was tremendously accelerated with assistance of microwave irradiation.

9.
Carbohydr Res ; 542: 109204, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38981322

RESUMEN

The hexasaccharide arabinan domain of Mycobacterial Arabinogalactan was provided with the versatile methodology toward ß-selective arabinofuranosylation directed by B(C6F5)3, demonstrating the effectiveness of the ß-arabinofuranosylation strategy. Derivatization of the amino moiety at the reducing end are essential prerequisites for elucidating the biosynthetic pathway and conjugating of this compound to a protein carrier for vaccine generation.

10.
ACS Omega ; 9(10): 11969-11975, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38497025

RESUMEN

Compared with stereoselective glycosylation methods mainly addressed on the preparation of pyranose glycosides, the furanosylation has been more limited, especially for the 1,2-cis arabinofuranosylation. Herein, we report a novel stereoselective 1,2-cis-arabinofuranosylation strategy using a conformationally restricted 3,5-O-xylylene-protected arabinofuranosyl donor on activation with B(C6F5)3 for desired targets in moderate to excellent yields and ß-stereoselectivity. The effectiveness of the 1,2-cis-arabinofuranosylation strategy was demonstrated successfully with various acceptors, including carbohydrate alcohols.

11.
MedComm (2020) ; 5(2): e484, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38344400

RESUMEN

The tumor-associated glycoprotein Mucin 1 (MUC1) is aberrantly glycosylated on cancer cells and is considered a promising target for antitumor vaccines. The weak immunogenicity and low sequence homology of mouse mucins and human MUC1 are the main obstacles for the development of vaccines. Herein, a self-adjuvanted strategy combining toll-like receptor 2 lipopeptide ligands and T-cell epitopes and the multivalent effect were used to amplify the immune response and evade the unpredictable immunogenicity, generating two self-adjuvanted three-component MUC1 vaccines (mono- and trivalent MUC1 vaccines). To simulate the aberrantly glycosylated MUC1 glycoprotein, the MUC1 tandem repeat peptide was bounded with Tn antigens at T9, S15, and T16, and served as B-cell epitopes. Results showed that both vaccines elicited a robust antibody response in wild-type mice compared with a weaker response in MUC1 transgenic mice. The trivalent vaccine did not elevate the antibody response level compared with the monovalent vaccine; however, a more delayed tumor growth and prolonged survival time was realized in wild-type and transgenic mouse models treated with the trivalent vaccine. These results indicate that the self-adjuvanted three-component MUC1 vaccines, especially the trivalent vaccine, can trigger robust antitumor effects regardless of sequence homology, and, therefore, show promise for clinical translation.

12.
J Org Chem ; 78(3): 1293-9, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23289793

RESUMEN

A mild and efficient protocol for the stereoselective synthesis of N-glycosides of enone sugars has been developed. The reaction proceeds to provide N-glycosides of enone sugars in moderate to good yields with preferential α-anomeric selectivity. Additionally, applications of the N-glycosides of enone sugar derivatives as precursor to assemble some biochemically functional derivatives have also been explored. This includes the use of N-glycosides of enone sugars as reactive dienophile in asymmetric synthesis of bicyclic adduct through Diels-Alder cycloaddition reaction.


Asunto(s)
Carbohidratos/química , Glicósidos/síntesis química , Reacción de Cicloadición , Glicósidos/química , Glicosilación , Estructura Molecular , Estereoisomerismo
13.
Pharmaceutics ; 15(6)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37376063

RESUMEN

ß-glucan, one of the homopolysaccharides composed of D-glucose, exists widely in cereals and microorganisms and possesses various biological activities, including anti-inflammatory, antioxidant, and anti-tumor properties. More recently, there has been mounting proof that ß-glucan functions as a physiologically active "biological response modulator (BRM)", promoting dendritic cell maturation, cytokine secretion, and regulating adaptive immune responses-all of which are directly connected with ß-glucan-regulated glucan receptors. This review focuses on the sources, structures, immune regulation, and receptor recognition mechanisms of ß-glucan.

14.
ACS Nano ; 17(9): 8004-8025, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37079378

RESUMEN

Self-assembly has emerged as an extensively used method for constructing biomaterials with sizes ranging from nanometers to micrometers. Peptides have been extensively investigated for self-assembly. They are widely applied owing to their desirable biocompatibility, biodegradability, and tunable architecture. The development of peptide-based nanoparticles often requires complex synthetic processes involving chemical modification and supramolecular self-assembly. Stimuli-responsive peptide nanoparticles, also termed "smart" nanoparticles, capable of conformational and chemical changes in response to stimuli, have emerged as a class of promising materials. These smart nanoparticles find a diverse range of biomedical applications, including drug delivery, diagnostics, and biosensors. Stimuli-responsive systems include external stimuli (such as light, temperature, ultrasound, and magnetic fields) and internal stimuli (such as pH, redox environment, salt concentration, and biomarkers), facilitating the generation of a library of self-assembled biomaterials for biomedical imaging and therapy. Thus, in this review, we mainly focus on peptide-based nanoparticles built by self-assembly strategy and systematically discuss their mechanisms in response to various stimuli. Furthermore, we summarize the diverse range of biomedical applications of peptide-based nanomaterials, including diagnosis and therapy, to demonstrate their potential for medical translation.


Asunto(s)
Nanopartículas , Nanoestructuras , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Materiales Biocompatibles/química , Péptidos/química
15.
J Am Chem Soc ; 134(29): 11924-7, 2012 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-22793256

RESUMEN

Mellein and the related 3,4-dihydroisocoumarins are a family of natural products with interesting biological properties. The mechanisms of dihydroisocoumarin biosynthesis remain largely speculative today. Here we report the synthesis of mellein by a partially reducing iterative polyketide synthase (PR-PKS) as a pentaketide product. Remarkably, despite the head-to-tail homology shared with several fungal and bacterial PR-PKSs, the mellein synthase exhibits a distinct keto reduction pattern in the synthesis of the pentaketide. We present evidence to show that the ketoreductase (KR) domain alone is able to recognize and differentiate the polyketide intermediates, which provides a mechanistic explanation for the programmed keto reduction in these PR-PKSs.


Asunto(s)
Actinomycetales/enzimología , Ocratoxinas/metabolismo , Sintasas Poliquetidas/metabolismo , Actinomycetales/química , Ocratoxinas/química , Oxidación-Reducción , Sintasas Poliquetidas/química , Estructura Terciaria de Proteína , Especificidad por Sustrato
16.
J Org Chem ; 77(12): 5245-54, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22651548

RESUMEN

The 3-aminoglycosides are ubiquitous in biologically important classes of glycoconjugates and naturally occurring oligosaccharides. Despite the rapid growth in the development of synthetic method of 3-amino glycosides, the current state-of-the art suffers from limited substrate scope, low yields, long reaction times, and anomeric mixtures. This work presents a novel direct method for the synthesis of 1,3-cis-3-arylsulphonaminodeoxydisaccharides and oligosaccharides via α-selective glycosylation and hydroamination of glycal in a one-pot manner. This efficient multicomponent reaction methodology provides ready access to 1,3-cis-3-arylsulphonaminodeoxydisaccharides and oligosaccharides and allows derivatization by variation of each component.


Asunto(s)
Aminoglicósidos/síntesis química , Oligosacáridos/síntesis química , Aminoglicósidos/química , Glicosilación , Estructura Molecular , Oligosacáridos/química , Estereoisomerismo
17.
Front Chem ; 10: 972429, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059876

RESUMEN

For the stereoselective assembly of bioactive glycans with various functions, 1,2-cis-O-glycosylation is one of the most essential issues in synthetic carbohydrate chemistry. The cis-configured O-glycosidic linkages to the substituents at two positions of the non-reducing side residue of the glycosides such as α-glucopyranoside, α-galactopyranoside, ß-mannopyranoside, ß-arabinofuranoside, and other rather rare glycosides are found in natural glycans, including glycoconjugate (glycoproteins, glycolipids, proteoglycans, and microbial polysaccharides) and glycoside natural products. The way to 1,2-trans isomers is well sophisticated by using the effect of neighboring group participation from the most effective and kinetically favored C-2 substituent such as an acyl group, although high stereoselective synthesis of 1,2-cis glycosides without formation of 1,2-trans isomers is far less straightforward. Although the key factors that control the stereoselectivity of glycosylation are largely understood since chemical glycosylation was considered to be one of the useful methods to obtain glycosidic linkages as the alternative way of isolation from natural sources, strictly controlled formation of these 1,2-cis glycosides is generally difficult. This minireview introduces some of the recent advances in the development of 1,2-cis selective glycosylations, including the quite recent developments in glycosyl donor modification, reaction conditions, and methods for activation of intermolecular glycosylation, including the bimodal glycosylation strategy for 1,2-cis and 1,2-trans glycosides, as well as intramolecular glycosylations, including recent applications of NAP-ether-mediated intramolecular aglycon delivery.

18.
Eur J Med Chem ; 227: 113917, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34688011

RESUMEN

Vaccine refers to biological products that are produced using various pathogenic microorganisms for inoculation. The goal of vaccination is to induce a robust immune response against a specific antigen, thus preventing the organism from getting infected. In vaccines, adjuvants have been widely employed to enhance immunity against specific antigens. An ideal adjuvant should be stable, biodegradable, and low cost, not induce system rejection and promote an immune response. Various adjuvant components have been investigated across diverse applications. Typically, adjuvants are employed to meet the following objectives: (1) to improve the effectiveness of immunization with vaccines for specific populations, such as newborns and the elderly; (2) enhance the immunogenicity of highly purified or recombinant antigens; (3) allow immunization with a smaller dose of the vaccine, reducing drug dosage. In the present review, we primarily focus on chemically synthesized compounds that can be used as built-in adjuvants. We elaborate the classification of these compounds based on the induced immune activation mechanism and summarize their application in various vaccine types.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Antígenos/efectos de los fármacos , Vacunas/inmunología , Animales , Antígenos/inmunología , Humanos , Vacunación
19.
Front Chem ; 10: 880128, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720985

RESUMEN

Glycosylation is one of the major forms of protein post-translational modification. N-glycans attached to proteins by covalent bonds play an indispensable role in intercellular interaction and immune function. In human bodies, most of the cell surface glycoproteins and secreted glycopeptides are modified with complex-type N-glycans. Thus, for analytical or medicinal purposes, efficient and universal methods to provide homogeneous complex-type N-glycans have been an urgent need. Despite the extremely complicated structures, tremendous progress in the synthesis of N-glycans has been achieved. On one hand, chemical strategies are shown to be effective to prepare core oligosaccharides of N-glycans by focusing on stereoselective glycosylations such as ß-mannosylation and α-sialylation, as well as the methodology of the N-glycan assembly. On the other hand, chemoenzymatic strategies have also become increasingly powerful in recent years. This review attempts to highlight the very recent advancements in chemical and chemoenzymatic strategies for eukaryotic complex-type N-glycans.

20.
Org Lett ; 24(43): 8025-8030, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36282514

RESUMEN

Conventional glycosylation with galactosyl donors having C-2 benzyl (Bn) ether-type functionality often leads to anomeric mixtures, due to the anomeric and steric effects that stabilize the 1,2-cis-α- and 1,2-trans-ß-glycosides, respectively. Herein we report a versatile ZnI2-directed ß-galactosylation approach employing a 4,6-O-tethered and 2-O-Bn galactosyl donor for the stereoselective and efficient synthesis of ß-O-galactosides. With a broad substrate scope, the reaction tolerates a wide range of functional groups and complex molecular architectures, providing stereocontrolled ß-galactosides in moderate to excellent yields. The practicality of this transformation is demonstrated through the synthesis of a tetrasaccharide arabinogalactan fragment with high stereoselectivity.


Asunto(s)
Éter , Glicósidos , Glicosilación , Glicósidos/química , Éteres , Éteres de Etila , Galactósidos , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda