Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Exp Lung Res ; 49(1): 27-38, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36621972

RESUMEN

BACKGROUND: To investigate the protective effect of p14ARF in a nitric acid (NA) aerosol inhalation-induced bronchiolitis obliterans (BO) mouse model and its potential regulatory mechanism. METHODS: A BO mouse model was established by NA aerosol inhalation. The expressions of p14ARF, phosphatidylinositol-3-kinase (PI3K), and protein kinase B (AKT) were detected by quantitative reverse transcription PCR (qRT-PCR) and western blot (WB). Hematoxylin (HE) staining, Masson staining, and periodic acid-Schiff (PAS) staining observed pulmonary histological changes. TdT-mediated dUTP nick end labeling (TUNEL) staining detected pulmonary cell apoptosis, and enzyme-linked immunosorbent assay (ELISA) measured matrix metalloproteinase-2 (MMP-2), MMP-9, tissue inhibitor of metalloproteinase-1 (TIMP-1), interleukon-6 (IL-6), and transforminh growth factor-ß (TGF-ß) levels in lung tissue and bronchoalveolar lavage fluid (BALF). RESULTS: The expressions of p14ARF, PI3K, and AKT showed a time gradient change, with a decrease trend (*P < 0.05 and **P < 0.01). Severe inflammatory infiltration and tracheal fibrosis were found in lung tissue in the modeling group (BO group) compared with the control group (Con group). The pH, PaO2, and PaO2/FiO2 values significantly reduced, while the PaCO2 value and the number of TUNEL-positive cells increased in BO group (P < 0.05). In addition, MMP-2, MMP-9, IL-6, and TGF-ß levels remarkably increased, with an increase in the number of white blood cells, neutrophils, and lymphocytes in BO group (P < 0.05). Furthermore, p14ARF up-regulation reversed the trend of the aforementioned indexes in BO mice. CONCLUSIONS: p14ARF ameliorated the inflammatory response and airway remodeling in a BO mouse model via the PI3K/AKT pathway.


Asunto(s)
Bronquiolitis Obliterante , Metaloproteinasa 2 de la Matriz , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína p14ARF Supresora de Tumor , Ácido Nítrico , Metaloproteinasa 9 de la Matriz/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Remodelación de las Vías Aéreas (Respiratorias) , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Interleucina-6 , Aerosoles y Gotitas Respiratorias , Bronquiolitis Obliterante/inducido químicamente , Bronquiolitis Obliterante/tratamiento farmacológico , Bronquiolitis Obliterante/metabolismo , Inflamación/tratamiento farmacológico , Factor de Crecimiento Transformador beta , Modelos Animales de Enfermedad
2.
Int Arch Allergy Immunol ; 183(10): 1098-1113, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35700708

RESUMEN

BACKGROUND: Infantile pneumonia is an acute inflammatory lesion of the lung caused by mycoplasma pneumonia. Indeed, Twist2 signaling pathway controls inflammatory reaction, oxidative stress, and other biological reaction. However, the regulation of Twist2 on the inflammation in infantile pneumonia remains unclear. This study explained that the function and mechanism of Twist2 in infantile pneumonia. METHODS: The subjects included the serum samples of 12 patients with infantile pneumonia and normal healthy volunteers from Hunan Children's Hospital. Besides, mice were given with lipopolysaccharide (LPS) into the lung. Moreover, RAW264.7 macrophages were stimulated with LPS for 4 h and added to the culture medium. RESULTS: In present study, in serum of patients with infantile pneumonia or lung tissue of mice model with infantile pneumonia, TWIST2 expression was lessened. Apart from that, TWIST2 protein could reduce the inflammatory reaction in mice model with infantile pneumonia, resulting in an inhibition in lung injury. Conversely, over-expression of TWIST2 also decreased inflammatory reaction in macrophages model via the regulation of FOXO1/NLRP3 pathway. Downregulation of TWIST2 promoted the inflammation in macrophages model by the regulation of FOXO1/NLRP3 pathway. CONCLUSION: According to the findings, present study have identified that the TWIST2 could reduce the inflammation of infantile pneumonia by NLRP3 inflammasome through the regulation of mitochondrial permeability transition and the induction of FOXO1 expression.


Asunto(s)
Inflamasomas , Neumonía , Animales , Ratones , Modelos Animales de Enfermedad , Proteína Forkhead Box O1 , Inflamasomas/metabolismo , Inflamación , Lipopolisacáridos/farmacología , Necrosis por Permeabilidad de la Transmembrana Mitocondrial , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína Relacionada con Twist 2
3.
Exp Mol Pathol ; : 104717, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34742738

RESUMEN

AIM OF THE STUDY: Asthma is a common and complex chronic inflammatory disease induced by genetic and environmental factors that affects the airways of the lungs. MicroRNAs (miRNAs) are key regulators of various cellular processes and have been shown to be critically involved in asthma progression. The objective of our study was to clarify the function and molecular mechanism of miR-140 in the progression of asthma. MATERIALS AND METHODS: MiR-140 expression was evaluated using RT-qPCR. Pathological changes in the lung tissue were confirmed using HE and PAS staining. The levels of IL-5, TGF-ß1, and IL-13 in the serum or bronchioalveolar lavage fluid were detected with an ELISA. Cellular apoptosis was measured using a TUNEL assay. The levels of Bax, Bcl-2, Cleaved caspase-3, and glycogen synthase kinase-3ß (GSK-3ß) were verified with a western blot. GSK3ß expression was also confirmed by immunohistochemistry. The binding ability between miR-140 and GSK3ß was confirmed using a luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Pull-down assay. RESULTS: MiR-140 was markedly downregulated in asthmatic mice. Additionally, miR-140 weakened airway inflammation and bronchial epithelial cell apoptosis in asthmatic mice. Further experiments revealed that miR-140 negatively regulated GSK3ß expression and could bind to GSK3ß in asthma. Finally, rescue assays demonstrated that GSK3ß overexpression rescued the effects of miR-140 on asthma progression. CONCLUSION: MiR-140 targeted GSK3ß to suppress airway inflammation and inhibit bronchial epithelial cell apoptosis in asthma.

4.
J Thorac Dis ; 16(9): 5981-5994, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39444898

RESUMEN

Background: As a novel immunomodulator, spleen aminopeptides (FUKETUO) can correct the imbalance of immune cells and elevate their functions. Spleen aminopeptides have been used in the treatment of respiratory diseases. However, the regulatory mechanism of it on allergic asthma and desensitization has not been reported, further study is critically needed. This study aimed to investigate the effect and mechanism of spleen aminopeptides on allergic asthma and desensitization. We established an allergic asthma model by house dust mite (HDM) with/without desensitization treatment. Methods: The allergic asthma mouse model was established with HDM and treated with desensitization and increasing dose of spleen aminopeptides according to different immune phases. Pathological markers such as airway hyper-responsiveness, and cell composition were monitored to determine the effectiveness of treatment. Results: Spleen aminopeptides can promote the proportion of interleukin-10 positive (IL10+) allergen-specific regulatory T cells (Tregs), and further promote interleukin-10 (IL-10) expression in desensitization. They alleviated the allergic symptoms and elevated desensitization, decreased airway hyper-reaction and lung tissue injury, reduced specific immunoglobulin E (IgE) in serum, eosinophil number and interleukin-4 (IL-4) expression in bronchoalveolar lavage fluid (BALF), therefore, being able to control allergic asthma. Conclusions: Our results suggested that spleen aminopeptides (FUKETUO) could elevate the expression of (CD4+CD25+IL10+) Tregs, especially when it co-immunized with desensitization. Thereby, FUKETUO improved the efficacy of desensitization, and inhibited the development of allergic asthma.

5.
Clinics (Sao Paulo) ; 79: 100361, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38678873

RESUMEN

OBJECTIVE: Early diagnosis of Severity Mycoplasma Pneumoniae Pneumonia (SMPP) has been a worldwide concern in clinical practice. Two cytokines, soluble Triggering Receptor Expressed on Myeloid cells (sTREM-1) and Interferon-Inducible Protein-10 (IP-10), were proved to be implicated in bacterial infection diseases. However, the diagnostic value of sTREM-1 and IP-10 in MPP was poorly known. This study aimed to investigate the diagnostic value of sTREM-1 and IP-10 for SMPP. METHODS: In this prospective study, the authors enrolled 44 children with MPP, along with their clinical information. Blood samples were collected, and cytokine levels of sTREM-1 and IP-10 were detected with ELISA assay. RESULTS: Serum levels of sTREM-1 and IP-10 were positively correlated with the severity of MPP. In addition, sTREM-1 and IP-10 have significant potential in the diagnosis of SMPP with an Area Under Curve (AUC) of 0.8564 (p-value = 0.0001, 95% CI 0.7461 to 0.9668) and 0.8086 (p-value = 0.0002, 95% CI 0.6918 to 0.9254) respectively. Notably, the combined diagnostic value of sTREM-1 and IP-10 is up to 0.911 in children with SMPP (p-value < 0.001, 95% CI 0.830 to 0.993). CONCLUSIONS: Serum cytokine levels of sTREM-1 and IP-10 have a great potential diagnostic value in children with SMPP.


Asunto(s)
Biomarcadores , Quimiocina CXCL10 , Ensayo de Inmunoadsorción Enzimática , Neumonía por Mycoplasma , Receptores Inmunológicos , Índice de Severidad de la Enfermedad , Receptor Activador Expresado en Células Mieloides 1 , Humanos , Receptor Activador Expresado en Células Mieloides 1/sangre , Femenino , Masculino , Neumonía por Mycoplasma/diagnóstico , Neumonía por Mycoplasma/sangre , Niño , Estudios Prospectivos , Preescolar , Quimiocina CXCL10/sangre , Receptores Inmunológicos/sangre , Biomarcadores/sangre , Glicoproteínas de Membrana/sangre , Mycoplasma pneumoniae , Lactante , Sensibilidad y Especificidad , Curva ROC , Adolescente
6.
Histol Histopathol ; 37(12): 1227-1240, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35796424

RESUMEN

BACKGROUND: Infantile pneumonia is an acute inflammatory disorder of the lung caused by mycoplasma pneumonia. SPHK1 (sphingosine kinase-1) signaling pathway is involved in the process of inflammatory diseases. However, whether SphK1 regulates inflammatory responses in infantile pneumonia remains unclear. In this study, we investigated the role of SPHK1 in infantile pneumonia and its underlying mechanisms. METHODS: Serum samples of 12 patients with infantile pneumonia and healthy controls were obtained from Hunan Children's Hospital. To induce pneumonia, mice were administrated with LPS (lipopolysaccharide) into the lung. RAW264.7 cells were used as an in vitro macrophage model stimulated with LPS or PBS for 4 h. RESULTS: SPHK1 mRNA level and protein level in the LPS-treated mice and patients with infantile pneumonia were significantly increased. SPHK1 promoted inflammation and lung injury in mice with infantile pneumonia. The knockdown of SPHK1 expression inhibited inflammation and restrained lung injury in mice with infantile pneumonia. SPHK1 overexpression also exacerbated inflammation in RAW264.7 cells stimulated by LPS, and SPHK1 silencing reduced inflammatory responses. We further showed that SPHK1 induced NLRP3 (NLR Family Pyrin Domain Containing 3) activity by inhibiting SIRT1 expression. CONCLUSION: Our study demonstrated that SPHK1 promotes inflammation of infantile pneumonia by modulating NLRP3 inflammasome via the regulation of SIRT1 expression and mitochondrial permeability transition.


Asunto(s)
Lesión Pulmonar , Neumonía , Animales , Ratones , Inflamasomas/genética , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Sirtuina 1/metabolismo , Lipopolisacáridos/toxicidad , Inflamación , Ratones Endogámicos C57BL
7.
Autoimmunity ; 54(7): 439-449, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34448644

RESUMEN

Asthma is a common respiratory disease which is characterized by persistent airway inflammation. Abnormal expression of long non-coding RNAs (lncRNAs) is observed in asthma. However, whether lncRNA nuclear-enriched abundant transcript 1 (NEAT1) regulates asthmatic inflammation and its mechanism still needs to be further investigated. The expression levels of inflammatory factors (tumour necrosis factor (TNF)-α, interleukin (IL)-4, IL-13, and IL-10) were detected using reverse transcription quantitative real-time PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). MTT and flow cytometry assays were employed to determine cell proliferation and apoptosis, respectively. Dual luciferase reporter assay was performed to verify the relationship between miR-200a/b and MMP-16 or NEAT1. NEAT1 silencing markedly reduced TNF-α, IL-4, and IL-13 levels, while elevated IL-10 expression, suppressed cell proliferation, and promoted cell apoptosis. However, NEAT1 overexpression elicited the opposite effects on cell proliferation and inflammation cytokines secretion. What is more, NEAT1 negatively regulated miR-200a/b expression, and MMP16 was a target gene of miR-200a/b. miR-200a/b overexpression suppressed inflammation, cell proliferation, and enhanced cell apoptosis through regulation of MMP16. Moreover, MMP-16 overexpression or miR-200a/b inhibition abolished the regulatory effect of sh-NEAT1 on cell inflammation and apoptosis in BEAS-2B cells. NEAT1 acted as the role of sponge for miR-200a/b to regulate MMP-16 expression, thereby promoting asthma progression, suggesting that NEAT1 might have great potential as therapeutic target for asthma.


Asunto(s)
Asma , Metaloproteinasa 16 de la Matriz , MicroARNs , ARN Largo no Codificante , Apoptosis/genética , Asma/genética , Asma/metabolismo , Proliferación Celular , Humanos , Inflamación/genética , Inflamación/metabolismo , Metaloproteinasa 16 de la Matriz/genética , Metaloproteinasa 16 de la Matriz/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
8.
Clinics ; Clinics;79: 100361, 2024. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1564353

RESUMEN

Abstract Objective Early diagnosis of Severity Mycoplasma Pneumoniae Pneumonia (SMPP) has been a worldwide concern in clinical practice. Two cytokines, soluble Triggering Receptor Expressed on Myeloid cells (sTREM-1) and Interferon-Inducible Protein-10 (IP-10), were proved to be implicated in bacterial infection diseases. However, the diagnostic value of sTREM-1 and IP-10 in MPP was poorly known. This study aimed to investigate the diagnostic value of sTREM-1 and IP-10 for SMPP. Methods In this prospective study, the authors enrolled 44 children with MPP, along with their clinical information. Blood samples were collected, and cytokine levels of sTREM-1 and IP-10 were detected with ELISA assay. Results Serum levels of sTREM-1 and IP-10 were positively correlated with the severity of MPP. In addition, sTREM-1 and IP-10 have significant potential in the diagnosis of SMPP with an Area Under Curve (AUC) of 0.8564 (p-value = 0.0001, 95% CI 0.7461 to 0.9668) and 0.8086 (p-value = 0.0002, 95% CI 0.6918 to 0.9254) respectively. Notably, the combined diagnostic value of sTREM-1 and IP-10 is up to 0.911 in children with SMPP (p-value < 0.001, 95% CI 0.830 to 0.993). Conclusions Serum cytokine levels of sTREM-1 and IP-10 have a great potential diagnostic value in children with SMPP.

9.
J Nephrol ; 29(1): 27-36, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26149640

RESUMEN

BACKGROUND: Ischemia-reperfusion (IR) causes acute kidney injury (AKI), and ischemia pretreatment may exert protection. Mitogen-activated protein kinase kinase 3 (MKK3), which is involved in the signal transduction pathway in IR-induced injury, is a potential target of miR-21. We aimed to verify the targeting regulation of miR-21 on MKK3 and to explore the effects of miR-21-mediated MKK3 expression changes in AKI. METHODS: Vectors containing the MKK3 3'UTR and mutated MKK3-3U-M were constructed and co-transfected with nonsense miR, miR-21-5p mimics or inhibitor in HEK293 cells. Gene expressions were detected by dual luciferase reporter assay. The effects of miR-21 on mRNA and protein of MKK3 were investigated in HK-2 cells. Male C57BL/6J mice were treated with ischemic preconditioning (IPC) and IR. Kidney functions were assessed through monitoring serum creatinine (Scr) and blood urea nitrogen (BUN). Pathological changes were observed and scored with histological samples of kidney. Expression levels of miR-21, MKK3, interleukin (IL)-6, tumor necrosis factor (TNF)-α before and after IPC and IR were examined by real-time polymerase chain reaction and/or immunohistochemistry. RESULTS: miR-21 regulated the expression of MKK3 via 3'UTR. Following IR, MKK3, IL-6 and TNF-α levels were increased. Scr, BUN and pathological injuries were aggravated, and miR-21 expression was increased. IPC increased miR-21 levels ahead of IR and inhibited the increases in MKK3, IL-6 and TNF-α levels and the aggravation of Scr, BUN and pathological injuries. CONCLUSIONS: miR-21 targets MKK3 in vivo and in vitro, inhibiting the downstream factors IL-6 and TNF-α. Therefore, miR-21 might be involved in protection of IPC against IR of the kidney.


Asunto(s)
Lesión Renal Aguda/prevención & control , Precondicionamiento Isquémico , Riñón/enzimología , MAP Quinasa Quinasa 3/metabolismo , MicroARNs/metabolismo , Daño por Reperfusión/prevención & control , Regiones no Traducidas 3' , Lesión Renal Aguda/enzimología , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Lesión Renal Aguda/fisiopatología , Animales , Sitios de Unión , Biomarcadores/sangre , Nitrógeno de la Urea Sanguínea , Creatinina/sangre , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Interleucina-6/sangre , Riñón/patología , Riñón/fisiopatología , MAP Quinasa Quinasa 3/genética , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , Daño por Reperfusión/enzimología , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Daño por Reperfusión/fisiopatología , Transducción de Señal , Factores de Tiempo , Transfección , Factor de Necrosis Tumoral alfa/sangre , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda