Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Front Mol Neurosci ; 15: 1006216, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36263378

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder accompanied by the loss and apoptosis of neurons. Neurons abnormally enter the cell cycle, which results in neuronal apoptosis during the course of AD development and progression. However, the mechanisms underlying cell cycle re-entry have been poorly studied. Using neuroblastoma (N) 2a SW and APP/PS1 transgenic (Tg) mice as in vitro and in vivo AD models, we found that the expression of cyclin-dependent kinase (CDK)1/2/4 and cyclin A2/B1/D3/E1 was increased while the protein expression of p18 and p21 was decreased, which led to enhanced cell cycle re-entry in a ß-amyloid protein (Aß)-dependent mechanism. By preparing and treating with the temperature-sensitive chitosan-encapsulated drug delivery system (CS), the abnormal expression of CDK1/2/4, cyclin A2/B1/D3/E1 and p18/21 was partially restored by acetylsalicylic acid (ASA), which decreased the apoptosis of neurons in APP/PS1 Tg mice. Moreover, CDK4 and p21 mediated the effects of ASA on activating transcription factor (TF) EB via peroxisome proliferator-activated receptor (PPAR) α, thus leading to the uptake of Aß by astrocytes in a low-density lipoprotein receptor (Ldlr)-dependent mechanism. Moreover, the mechanisms of Aß-degrading mechanisms are activated, including the production of microtubule-associated protein light chain (LC) 3II and Lamp2 protein by ASA in a PPARα-activated TFEB-dependent manner. All these actions contribute to decreasing the production and deposition of Aß, thus leading to improved cognitive decline in APP/PS1 Tg mice.

2.
Artículo en Inglés | MEDLINE | ID: mdl-30510777

RESUMEN

Osteoarthritis (OA) was recently identified as being regulated by the induction of cyclooxygenase-2 (COX-2) in response to high fluid shear stress. Although the metabolic products of COX-2, including prostaglandin (PG)E2, 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2), and PGF2α, have been reported to be effective in regulating the occurrence and development of OA by activating matrix metalloproteinases (MMPs), the roles of PGF2α in OA are largely overlooked. Thus, we showed that high fluid shear stress induced the mRNA expression of MMP-12 via cyclic (c)AMP- and PGF2α-dependent signaling pathways. Specifically, we found that high fluid shear stress (20 dyn/cm2) significantly increased the expression of MMP-12 at 6 h ( > fivefold), which then slightly decreased until 48 h ( > threefold). In addition, shear stress enhanced the rapid synthesis of PGE2 and PGF2α, which generated synergistic effects on the expression of MMP-12 via EP2/EP3-, PGF2α receptor (FPR)-, cAMP- and insulin growth factor-2 (IGF-2)-dependent phosphatidylinositide 3-kinase (PI3-K)/protein kinase B (AKT), c-Jun N-terminal kinase (JNK)/c-Jun, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-activating pathways. Prolonged shear stress induced the synthesis of 15d-PGJ2, which is responsible for suppressing the high levels of MMP-12 at 48 h. These in vitro observations were further validated by in vivo experiments to evaluate the mechanisms of MMP-12 upregulation during the onset of OA by high fluid shear stress. By delineating this signaling pathway, our data provide a targeted therapeutic basis for combating OA.

3.
Biomaterials ; 145: 106-127, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28865290

RESUMEN

Alzheimer's disease (AD) is characterized by the loss of neurogenesis and excessive induction of apoptosis. The induction of neurogenesis and inhibition of apoptosis may be a promising therapeutic approach to combating the disease. Celecoxib (CB), a cyclooxygenase-2 specific inhibitor, could offer neuroprotection. Specifically, the CB-encapsulated erythrocyte membranes (CB-RBCMs) sustained the release of CB over a period of 72 h in vitro and exhibited high brain biodistribution efficiency following intranasal administration, which resulted in the clearance of aggregated ß-amyloid proteins (Aß) in neurons. The high accumulation of the CB-RBCMs in neurons resulted in a decrease in the neurotoxicity of CB and an increase in the migratory activity of neurons, and alleviated cognitive decline in APP/PS1 transgenic (Tg) mice. Indeed, COX-2 metabolic products including prostaglandin E2 (PGE2) and PGD2, PGE2 induced neurogenesis by enhancing the expression of SOD2 and 14-3-3ζ, and PGD2 stimulated apoptosis by increasing the expression of BIK and decreasing the expression of ARRB1. To this end, the CB-RBCMs achieved better effects on concurrently increasing neurogenesis and decreasing apoptosis than the phospholipid membrane-encapsulated CB liposomes (CB-PSPD-LPs), which are critical for the development and progression of AD. Therefore, CB-RBCMs provide a rational design to treat AD by promoting the self-repairing capacity of the brain.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Apoptosis , Celecoxib/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Membrana Eritrocítica/metabolismo , Neurogénesis , Presenilina-1/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/patología , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Celecoxib/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/patología , Dinoprostona/farmacología , Membrana Eritrocítica/efectos de los fármacos , Células HEK293 , Humanos , Liposomas/ultraestructura , Ratones Transgénicos , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosfolípidos/química , Prostaglandina D2/farmacología , Ratas Wistar , Superóxido Dismutasa/metabolismo , Distribución Tisular/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , beta-Arrestina 1/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda