Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Acta Pharmacol Sin ; 40(10): 1303-1313, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31235816

RESUMEN

Metalloproteinase 9 (MMP-9) is able to degrade collagen IV, an important component of blood-brain barrier (BBB). Expression of MMPs, especially MMP-9, correlates with BBB disruption during central nervous system inflammation. Propofol has been reported to have anti-inflammation effects. In this study, we investigated the effects of propofol on TNF-α-induced MMP-9 expression in human cerebral microvascular endothelial cells (hCMEC/D3 cells) and explored the underlying mechanisms. The hCMEC/D3 cells were treated with propofol (25 µM), followed by TNF-α (25 ng/mL). We showed that TNF-α treatment markedly increased MMP-9 expression and decreased collagen IV expression in hCMEC/D3 cells, which was blocked by pretreatment with propofol. TNF-α-induced downregulation of collagen IV was also reversed by MMP-9 knockdown with siRNA. We revealed that TNF-α upregulated MMP-9 expression in hCMEC/D3 cells through activation of Ca2+/CAMK II/ERK/NF-κB signaling pathway; co-treatment with inhibitors of CaMK II (KN93), ERK (LY3214996), NF-κB (PDTC) or Ca2+chelator (BAPTA-AM) abrogated the effect of TNF-α on MMP-9 expression. We further established an in vitro BBB model by co-culturing of hCMEC/D3 cells and human astrocytes for 6 days and measuring trans-endothelial electrical resistance (TEER) to reflect the BBB permeability. TNF-α treatment markedly decreased TEER value, which was attenuated by pretreatment with propofol (25 µM) or MMP-9 knockdown with siRNA. In conclusion, propofol inhibits TNF-α-induced MMP-9 expression in hCMEC/D3 cells via repressing the Ca2+/CAMKII/ERK/NF-κB signaling pathway. TNF-α-impaired BBB integrity could be reversed by propofol, and propofol attenuates the inhibitory effect of TNF-α on collagen IV.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/genética , Microvasos/efectos de los fármacos , Propofol/farmacología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Endoteliales/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Microvasos/metabolismo , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Factor de Necrosis Tumoral alfa/metabolismo
2.
Extremophiles ; 22(3): 525-535, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29476252

RESUMEN

Fungal communities represent an indispensable part of the geothermal spring ecosystem; however, studies on fungal community within hot springs are still scant. Here, we used Illumina HiSeq 2500 sequencing to detect fungal community diversity in extremely acidic hot springs (pH < 4) and neutral and alkaline springs (pH > 6) of Tengchong-indicated by the presence of over 0.75 million valid reads. These sequences were phylogenetically assigned to 5 fungal phyla, 67 order, and 375 genera, indicating unexpected fungal diversity in the hot springs. The genera such as Penicillium, Entyloma, and Cladosporium dominated the fungal community in the acidic geothermal springs, while the groups such as Penicillium, Engyodontium, and Schizophyllum controlled the fungal assemblages in the alkaline hot springs. The alpha-diversity indices and the abundant fungal taxa were significantly correlated with physicochemical factors of the hot springs particularly pH, temperature, and concentrations of Fe2+, NH4+, NO 2-, and S2-, suggesting that the diversity and distribution of fungal assemblages can be influenced by the complex environmental factors of hot springs.


Asunto(s)
Hongos/aislamiento & purificación , Manantiales de Aguas Termales/microbiología , Microbiota , Ácidos/análisis , Álcalis/análisis , Amoníaco/análisis , Amoníaco/metabolismo , Hongos/clasificación , Hongos/metabolismo , Manantiales de Aguas Termales/química , Hierro/análisis , Hierro/metabolismo , Azufre/análisis , Azufre/metabolismo
3.
J Biol Chem ; 291(50): 26138-26150, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27810895

RESUMEN

The pyruvate kinase (PK) is a rate-limiting glycolytic enzyme catalyzing the dephosphorylation of phosphoenolpyruvate to pyruvate, yielding one molecule of ATP. The M2 isoform of PK (PKM2) is predominantly expressed in normal proliferating cells and tumors, and both metabolic and non-metabolic activities for the enzyme in promoting tumor cell proliferation have been identified. However, the exact roles of PKM2 in tumor initiation, growth and maintenance are not yet fully understood. Using immunoprecipitation-coupled LC-MS/MS in MCF7 cells exposed to DNA-damaging agent, we report that the nuclear PKM2 interacts directly with P53 protein, a critical safeguard for genome stability. Specifically, PKM2 inhibits P53-dependent transactivation of the P21 gene by preventing P53 binding to the P21 promoter, leading to a nonstop G1 phase. As a result, PKM2 expression provides a growth advantage for tumor cells in the presence of a DNA damage stimulus. In addition, PKM2 interferes with phosphorylation of P53 at serine 15, known to stimulate P53 activity by the ATM serine/threonine kinase. These findings reveal a new role for PKM2 in modulating the DNA damage response and illustrate a novel mechanism of PKM2 participating in tumorigenesis.


Asunto(s)
Daño del ADN , Neoplasias/metabolismo , Piruvato Quinasa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/biosíntesis , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Neoplasias/genética , Piruvato Quinasa/genética , Proteína p53 Supresora de Tumor/genética
4.
Sheng Li Xue Bao ; 69(5): 532-540, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-29063102

RESUMEN

Numerous studies have demonstrated that estrogens may exert multifaceted effects on the cardiovascular system via activating the classical nuclear receptors ERα or ERß and the novel G protein coupled estrogen receptor (Gper). However, some studies have reported inconsistent cardiovascular phenotypes in Gper-deficient mice. The current study was aimed to reveal the effects of genetic deletion of Gper on the arterial blood pressure (ABP) and heart rate in rats. Gper-deficient Sprague-Dawley rats were generated by utilizing the CRISPR-Cas9 gene-editing technique. ABP of 10-week old male (n = 6) and 12-week old female (n = 6) Gper-deficient rats and age-matched wild type (WT) rats (6 females and 6 males) were measured under awake and restrained conditions through the non-invasive tail-cuff method daily for 8 (females) or 9 days (males). In the male WT rats, ABP and heart rate were slightly higher in day 1 to 4 than those in day 5 to 9, indicative of stress-related sympathoexcitation in the first few days and gradual adaptation to the restrained stress in later days. Gper-deficient rats had significantly higher ABP initially (male: day 1 to day 5; female: day 1 to day 3) and similar ABP in later days of measurement compared with the WT rats. The heart rate of male Gper-deficient rats was consistently higher than that of the male WT rats from day 1 to day 8. Both male and female Gper-deficient rats appeared to show slower body weight gain than the WT counterparts during the study period. Under anesthesia, ABP of Gper-deficient rats was not significantly different from their WT counterparts. These results indicate that Gper-deficient rats may be more sensitive to stress-induced sympathoexcitation and highlight the importance of Gper in the regulation of the cardiovascular function in stressful conditions.


Asunto(s)
Hipertensión/etiología , Receptores de Estrógenos/fisiología , Receptores Acoplados a Proteínas G/fisiología , Estrés Psicológico/complicaciones , Animales , Femenino , Masculino , Ratas , Ratas Sprague-Dawley
5.
Adv Sci (Weinh) ; : e2402086, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946582

RESUMEN

Diabetic neuropathic pain (DNP), one of the most common complications of diabetes, is characterized by bilateral symmetrical distal limb pain and substantial morbidity. To compare the differences  is aimed at serum metabolite levels between 81 DNP and 73 T2DM patients without neuropathy and found that the levels of branched-chain amino acids (BCAA) are significantly lower in DNP patients than in T2DM patients. In high-fat diet/low-dose streptozotocin (HFD/STZ)-induced T2DM and leptin receptor-deficient diabetic (db/db) mouse models, it is verified that BCAA deficiency aggravated, whereas BCAA supplementation alleviated DNP symptoms. Mechanistically, using a combination of RNA sequencing of mouse dorsal root ganglion (DRG) tissues and label-free quantitative proteomic analysis of cultured cells, it is found that BCAA deficiency activated the expression of L-type amino acid transporter 1 (LAT1) through ATF4, which is reversed by BCAA supplementation. Abnormally upregulated LAT1 reduced Kv1.2 localization to the cell membrane, and inhibited Kv1.2 channels, thereby increasing neuronal excitability and causing neuropathy. Furthermore, intraperitoneal injection of the LAT1 inhibitor, BCH, alleviated DNP symptoms in mice, confirming that BCAA-deficiency-induced LAT1 activation contributes to the onset of DNP. These findings provide fresh insights into the metabolic differences between DNP and T2DM, and the development of approaches for the management of DNP.

6.
CNS Neurosci Ther ; 25(6): 704-713, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30680941

RESUMEN

AIMS: Hypoxia may damage blood-brain barrier (BBB). The neuroprotective effect of propofol has been reported. We aimed to identify whether and how propofol improved hypoxia-induced impairment of BBB integrity. METHODS: Mouse brain microvascular endothelial cells (MBMECs) and astrocytes were cocultured to establish in vitro BBB model. The effects of hypoxia and propofol on BBB integrity were examined. Further, zonula occludens-1 (ZO-1) expression and phosphorylation, hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression, intracellular calcium concentration and Ca2+ /calmodulin-dependent protein kinase II (CAMKII) activation were measured. RESULTS: Hypoxia-impaired BBB integrity, which was protected by propofol. Hypoxia-reduced ZO-1 expression, while induced ZO-1 phosphorylation. These effects were attenuated by propofol. The expression of HIF-1α and VEGF was increased by hypoxia and was alleviated by propofol. The hypoxia-mediated suppression of ZO-1 and impaired BBB integrity was reversed by HIF-α inhibitor and VEGF inhibitor. In addition, hypoxia increased the intracellular calcium concentration and induced the phosphorylation of CAMKII, which were mitigated by propofol. The hypoxia-induced phosphorylation of ZO-1 and impaired BBB integrity was ameliorated by calcium chelator and CAMKII inhibitor. CONCLUSION: Propofol could protect against hypoxia-mediated impairment of BBB integrity. The underlying mechanisms may involve the expression and phosphorylation of ZO-1.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Fármacos Cardiovasculares/farmacología , Hipoxia de la Célula/efectos de los fármacos , Propofol/farmacología , Proteína de la Zonula Occludens-1/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Calcio/metabolismo , Hipoxia de la Célula/fisiología , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Microvasos/efectos de los fármacos , Microvasos/metabolismo , Fosforilación/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
CNS Neurosci Ther ; 23(12): 980-989, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29047208

RESUMEN

AIMS: Estrogens are known to exert a wide spectrum of actions on brain functions including modulation of pain. Besides the circulating estrogens produced mainly by the ovaries, many brain regions are also capable of de novo synthesizing estrogens, which may exert important modulatory effects on neuronal functions. This study was aimed to test the hypothesis that aromatase, the enzyme that catalyzes the conversion of testosterone to estradiols, may be distributed in the rostral ventromedial medulla (RVM), where it may impact on visceral pain. METHODS AND RESULTS: Adult female rats were treated with cyclophosphamide (CPM, 50 mg/kg, ip, once every 3 days) or saline. At approximately day 10 following the 3rd injection, CPM-treated rats exhibited colorectal hyperalgesia as they showed significantly greater abdominal withdrawal responses (AWR) to graded colorectal distension (CRD, 0-100 mm Hg) than the saline group. Immunofluorescent staining and Western blot assay revealed that CPM-induced colorectal hyperalgesia was associated with significantly increased expression of aromatase and phosphorylated µ-type opioid receptor (pMOR) and decreased expression of total MOR in the RVM. Intracisternal application of aromatase inhibitors, fadrozole, and letrozole reversed CPM-induced colorectal hyperalgesia and restored pMOR and MOR expression in the RVM. CONCLUSIONS: Our observations confirmed the expression of aromatase in the RVM, a pivotal brain region in descending modulation of pain and opioid analgesia. The results support the hypothesis that locally produced estrogens in the RVM may be involved in the maintenance of chronic visceral hyperalgesia and the downstream signaling may involve phosphorylation of MOR.


Asunto(s)
Aromatasa/metabolismo , Bulbo Raquídeo/metabolismo , Dolor Visceral/metabolismo , Dolor Visceral/patología , Animales , Antirreumáticos/toxicidad , Ciclofosfamida/toxicidad , Modelos Animales de Enfermedad , Femenino , Hiperalgesia/metabolismo , Umbral del Dolor , Ratas , Dolor Visceral/inducido químicamente
8.
Front Microbiol ; 8: 1789, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28983284

RESUMEN

Halophilic fungi have evolved unique osmoadaptive strategies, enabling them to thrive in hypersaline habitats. Here, we conduct morphological and transcriptomic response of endophytic fungus (Aspergillus montevidensis ZYD4) in both the presence and absence of salt stress. Under salt stress, the colony morphology of the A. montevidensis ZYD4 changed drastically and exhibited decreased colony pigmentation. Extensive conidiophores development was observed under salt stress; conidiophores rarely developed in the absence of salt stress. Under salt stress, yellow cleistothecium formation was inhibited, while glycerol and compatible sugars continued to accumulate. Among differentially expressed unigenes (DEGs), 733 of them were up-regulated while 1,619 unigenes were down-regulated. We discovered that genes involved in the accumulation of glycerol, the storage of compatible sugars, organic acids, pigment production, and asexual sporulation were differentially regulated under salt stress. These results provide further understanding of the molecular basis of osmoadaptive mechanisms of halophilic endophytic fungi.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda