Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Small ; 14(21): e1703521, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29473336

RESUMEN

Nanofibers/nanowires usually exhibit exceptionally low flexural rigidities and remarkable tolerance against mechanical bending, showing superior advantages in flexible electronics applications. Electrospinning is regarded as a powerful process for this 1D nanostructure; however, it can only be able to produce chaotic fibers that are incompatible with the well-patterned microstructures in flexible electronics. Electro-hydrodynamic (EHD) direct-writing technology enables large-scale deposition of highly aligned nanofibers in an additive, noncontact, real-time adjustment, and individual control manner on rigid or flexible, planar or curved substrates, making it rather attractive in the fabrication of flexible electronics. In this Review, the ground-breaking research progress in the field of EHD direct-writing technology is summarized, including a brief chronology of EHD direct-writing techniques, basic principles and alignment strategies, and applications in flexible electronics. Finally, future prospects are suggested to advance flexible electronics based on orderly arranged EHD direct-written fibers. This technology overcomes the limitations of the resolution of fabrication and viscosity of ink of conventional inkjet printing, and represents major advances in manufacturing of flexible electronics.

2.
Soft Matter ; 13(40): 7244-7254, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28944394

RESUMEN

Self-similar structures are capable of highly enhancing the deformability of stretchable electronics. We presented a self-assembly method based on the tunable buckling of serpentine fiber-based interconnects (FiberBIs), which are deposited using our presented helix electrohydrodynamic printing (HE-printing) technique, to fabricate self-similar structures with enhanced stretchability (up to 250%). It provides a low-cost, printing-based approach for the generation of large-scale self-similar FiberBIs. Distinct buckling behaviors and modes occur under specific conditions. To elucidate the mechanics governing this phenomenon, we present detailed experimental and theoretical studies of the buckling mechanics of serpentine microfibers on compliant substrates. Firstly, the effect of the magnitude and direction of prestrain on the buckling behavior of a fiber-on-substrate is discussed. Secondly, the critical geometry of a serpentine fiber as a key parameter for fabricating uniform self-similar fibers is also figured out. Finally, the cross-sectional geometry of the fiber as a judgment criterion for determining the in-surface or out-of-surface buckling of the fiber is established. The investigation can guide the fabrication process of large-scale self-similar structures for high-performance electronic devices with extreme stretchability.

3.
Polymers (Basel) ; 9(9)2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-30965737

RESUMEN

Micro/nano serpentine structures have widespread applications in flexible/stretchable electronics; however, challenges still exist for low-cost, high-efficiency and controllable manufacturing. Helix electrohydrodynamic printing (HE-printing) has been proposed here to realize controllable direct-writing of large area, highly aligned serpentine micro/nanofibers by introducing the rope coiling effect into printing process. By manipulating the flying trajectory and solidification degree of the micro/nano jet, the solidified micro/nanofiber flying in a stabilized helical manner and versatile serpentine structures deposited on a moving collector have been achieved. Systematic experiments and theoretical analysis were conducted to study the transformation behavior and the size changing rules for various deposited microstructures, and highly aligned serpentine microfibers were directly written by controlling the applied voltage, nozzle-to-collector distance and collector velocity. Furthermore, a hyper-stretchable piezoelectric device that can detect stretching, bending and pressure has been successfully fabricated using the printed serpentine micro/nanofibers, demonstrating the potential of HE-printing in stretchable electronics manufacturing.

4.
Polymers (Basel) ; 9(12)2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30966018

RESUMEN

Stretchable nanogenerators that directly generate electricity are promising for a wide range of applications in wearable electronics. However, the stretchability of the devices has been a long-standing challenge. Here we present a newly-designed ultra-stretchable nanogenerator based on fractal-inspired piezoelectric nanofibers and liquid metal electrodes that can withstand strain as large as 200%. The large-scale fractal poly(vinylidene fluoride) (PVDF) micro/nanofibers are fabricated by combination of helix electrohydrodynamic printing (HE-Printing) and buckling-driven self-assembly. HE-Printing exploits "whipping/buckling" instability of electrospinning to deposit serpentine fibers with diverse geometries in a programmable, accurately positioned, and individually-controlled manner. Self-organized buckling utilizes the driven force from the prestrained elastomer to assemble serpentine fibers into ultra-stretchable fractal inspired architecture. The nanogenerator with embedded fractal PVDF fibers and liquid-metal microelectrodes demonstrates high stretchability (>200%) and electricity (currents >200 nA), it can harvest energy from all directions by arbitrary mechanical motion, and the rectified output has been applied to charge the commercial capacitor and drive LEDs, which enables wearable electronics applications in sensing and energy harvesting.

5.
Nanoscale ; 9(48): 19050-19057, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29094745

RESUMEN

Small-channel organic thin-film transistors (OTFTs) are an essential component of microelectronic devices. With the advent of flexible electronics, the fabrication of OTFTs still faces numerous hurdles in the realization of highly-functional, devices of commercial value. Herein, a concise and efficient procedure is proposed for the fabrication of flexible, small-channel organic thin-film transistor (OTFT) arrays on large-area substrates that circumvents the use of photolithography. By employing a low-cost and high-resolution mechano-electrospinning technology, large-scale micro/nanofiber-based patterns can be digitally printed on flexible substrates (Si wafer or plastic), which can act as the channel mask of TFT instead of a photolithography reticle. The dimensions of the micro/nanochannel can be manipulated by tuning the processing parameters such as the nozzle-to-substrate distance, applied voltage, and fluid supply. The devices exhibit excellent electrical properties with high mobilities (∼0.62 cm2 V-1 s-1) and high on/off current ratios (∼2.47 × 106), and they are able to maintain stability upon being bent from 25 mm to 2.75 mm (bending radius) over 120 testing cycles. This electrohydrodynamic lithography-based approach is a digital, programmable, and reliable alternative for easily fabricating flexible, small-channel OTFTs, which can be integrated into flexible and wearable devices.

6.
Sci Rep ; 4: 5949, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25091829

RESUMEN

Direct writing of hierarchical micro/nanofibers have recently gained popularity in flexible/stretchable electronics due to its low cost, simple process and high throughput. A kinetically controlled mechanoelectrospinning (MES) is developed to directly write diversified hierarchical micro/nanofibers in a continuous and programmable manner. Unlike conventional near-field electrospinning, our MES method introduces a mechanical drawing force, to simultaneously enhance the positioning accuracy and morphology controllability. The MES is predominantly controlled by the substrate speed, the nozzle-to-substrate distance, and the applied voltage. As a demonstration, smooth straight, serpentine, self-similar, and bead-on-string structures are direct-written on silicon/elastomer substrates with a resolution of 200 nm. It is believed that MES can promote the low-cost, high precision fabrication of flexible/stretchable electronics or enable the direct writing of the sacrificial structures for nanoscale lithography.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda