Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Opt Express ; 31(3): 4108-4121, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785386

RESUMEN

The optical compensation method is a promising method to compensate the image motion by driving the optical element of the system. However, the tilt motion of the optical element could induce the degradation of the image quality. Based on the Nodal Aberration Theory (NAT), this paper proposes a novel optical image motion compensation design with a secondary tilt-aplanatic two-mirror optical system (STATOS), which achieves the insensitivity on the image quality of the optical system. First, the properties of coma-free pivot point depending on the location of stop at primary mirror or secondary mirror have been analyzed respectively. Then the calculating method about construction parameters in terms of STATOS is developed. Further, the maximum tilt angle of secondary mirror could be solved using NAT under ordered specific restriction. Finally, a prototype is designed with SM-tilting result of MTF value maintain above 0.32 at the cut-off frequency of detector, where the principal distance could remain stable and the changed distortion is better than 0.03%. A test flight has been carried out to prove the desired results and feasibility of STATOS used in an aerial mapping camera.

2.
Sensors (Basel) ; 23(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36850352

RESUMEN

The remote sensing imaging requirements of aerial cameras require their optical system to have wide temperature adaptability. Based on the optical passive athermal technology, the expression of thermal power offset of a single lens in the catadioptric optical system is first derived, and then a mathematical model for efficient optimization of materials is established; finally, the mechanical material combination (mirror and housing material) is optimized according to the comprehensive weight of offset with temperature change and the position change of the equivalent single lens, and achieve optimization of the lens material on an athermal map. In order to verify the effectiveness of the method, an example of a catadioptric aerial optical system with a focal length of 350 mm is designed. The results show that in the temperature range of -40 °C to 60 °C, the diffraction-limited MTF of the designed optical system is 0.59 (at 68 lp/mm), the MTF of each field of view is greater than 0.39, and the thermal defocus is less than 0.004 mm, which is within one time of the focal depth, indicating that the imaging quality of the optical system basically does not change with temperature, meeting the stringent application requirements of the aerial camera.

3.
Sensors (Basel) ; 23(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36850548

RESUMEN

Due to the extreme environmental temperature variations, solutions that enable ultra-low thermal sensitivity in a mirror assembly are crucial for high-performance aerial optical imaging sensors (AOIS). Strategies such as the elimination of the coefficient of thermal expansion (CTE) mismatch and the employment of a flexure connection at the interface cannot be simply duplicated for the application involved, demanding specific design constraints. The contributions of support point number to the surface thermal sensitivity reduction and support stiffness improvement have been studied. A synthetic six-point support system that integrates equally spaced multiple ultra-low radial stiffness mirror flexure units and assembly external interface flexure units has been demonstrated on a 260 mm apertured annular mirror that involves significant CTE mismatch and demanding support stiffness constraint. The surface deformation RMS, due to the 35 °C temperature variation, is 16.7 nm.

4.
Sensors (Basel) ; 22(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35271049

RESUMEN

High-precision, real-time, and long-range target geo-location is crucial to UAV reconnaissance and target strikes. Traditional geo-location methods are highly dependent on the accuracies of GPS/INS and the target elevation, which restricts the target geo-location accuracy for LRORS. Moreover, due to the limitations of laser range and the common, real time methods of improving the accuracy, such as laser range finders, DEM and geographic reference data are inappropriate for long-range UAVs. To address the above problems, a set of work patterns and a novel geo-location method are proposed in this paper. The proposed method is not restricted by conditions such as the accuracy of GPS/INS, target elevation, and range finding instrumentation. Specifically, three steps are given, to perform as follows: First, calculate the rough geo-location of the target using the traditional method. Then, according to the rough geo-location, reimage the target. Due to errors in GPS/INS and target elevation, there will be a re-projection error between the actual points of the target and the calculated projection ones. Third, a weighted filtering algorithm is proposed to obtain the optimized target geo-location by processing the reprojection error. Repeat the above process until the target geo-location estimation converges on the true value. The geo-location accuracy is improved by the work pattern and the optimization algorithm. The proposed method was verified by simulation and a flight experiment. The results showed that the proposed method can improve the geo-location accuracy by 38.8 times and 22.5 times compared with traditional methods and DEM methods, respectively. The results indicate that our method is efficient and robust, and can achieve high-precision target geo-location, with an easy implementation.

5.
Opt Express ; 29(10): 14868-14882, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33985199

RESUMEN

This paper presents a method for the automatic design of a special mid-wavelength infrared zoom system in which the positions of both the pupil planes and the image plane are fixed during the zooming process. In this method, the formulas for the desired zoom system are derived to ensure the exact fulfillment of the conditions with three moving components based on Gaussian reduction. A mathematical model is established based on the particle swarm optimization to determine the first-order parameters of the paraxial design. Then, the model is optimized by iteratively updating a candidate solution with regard to a specific merit function that characterizes the zoom ratio, compactness, and aberration terms. In the optimization phase, the physical feasibility is considered as the constraint on the candidate solutions. Using two examples, this work demonstrates that the developed method is an efficient and practical tool for finding a realizable initial configuration of a dual-conjugate zoom system. Since this method is no longer reliant on the traditional trial-and-error technique, it is an important step toward the automatic design of complex optical systems using artificial intelligence.

6.
Appl Opt ; 60(5): 1387-1398, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33690583

RESUMEN

In order to meet the accuracy requirements of target geo-location of a wide-area reconnaissance camera, it is necessary to calibrate the extrinsic parameters of the camera. A novel calibration method is proposed for the orientation relationship between the camera coordinate system (CCS) and the frame coordinate system (FCS). First, the calibration between the roll axis of the FCS and the CCS is carried out based on the method of the extended Kalman filter. Second, the calibration between the pitch axis of the FCS and the CCS is deduced based on the least mean square combined with the particle swarm optimization method. Then, the calibration accuracy of the proposed method is quantitatively analyzed by numerical simulation. Finally, a calibration experiment is conducted on verifying the effectiveness of the method.

7.
Sensors (Basel) ; 21(19)2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34640762

RESUMEN

In order to enable the aerial photoelectric equipment to realize wide-area reconnaissance and target surveillance at the same time, a dual-band dynamic scan and stare imaging system is proposed in this paper. The imaging system performs scanning and pointing through a two-axis gimbal, compensating the image motion caused by the aircraft and gimbal angular velocity and the aircraft liner velocity using two two-axis fast steering mirrors (FSMs). The composition and working principle of the dynamic scan and stare imaging system, the detailed scheme of the two-axis FSM and the image motion compensation (IMC) algorithm are introduced. Both the structure and the mirror of the FSM adopt aluminum alloys, and the flexible support structure is designed based on four cross-axis flexural hinges. The Root-Mean-Square (RMS) error of the mirror reaches 15.8 nm and the total weight of the FSM assembly is 510 g. The IMC rate equations of the two-axis FSM are established based on the coordinate transformation method. The effectiveness of the FSM and IMC algorithm is verified by the dynamic imaging test in the laboratory and flight test.

8.
Sensors (Basel) ; 21(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34502810

RESUMEN

In order to reduce the influence of the optical window on the image quality of a hypersonic visible light optical remote sensor, we propose a method of adding a double-layer semicircular honeycomb core microstructure with flexible support of a high temperature elastic alloy between a window glass and a frame to reduce the influence of complex thermal stress on the surface accuracy of the optical window. An equivalent model of a semicircular honeycomb structure was established, the elastic parameters of the semicircular honeycomb sandwich microstructure were derived by an analytical method, and a numerical verification and finite element simulation were carried out. The results show that the equivalent model is in good agreement with the detailed model. The optical-mechanical-thermal integrated simulation analysis of the optical window assembly with flexible supporting microstructure proves that the semicircular honeycomb sandwich flexible supporting structure has a positive effect on stress attenuation of the window glass and ensures the wave aberration accuracy of the transmitted optical path difference of the optical window (PV < 0.665 λ, RMS < 0.156 λ, λ = 632.8 nm). Combined with the actual optical system, the optical performance of the window assembly under the flexible support structure is verified. The simulation results show that the spatial frequency of the modulation transfer function (MTF) of the optical system after focusing is not less than 0.58 in the range of 0-63 cycle/mm and the relative decline of MTF is not more than 0.01, which meet the imaging requirements of a remote sensor. The study results show that the proposed metal-based double-layer semicircular honeycomb sandwich flexible support microstructure ensures the imaging quality of the optical window under ultra-high temperature conditions.

9.
Appl Opt ; 59(15): 4642-4649, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32543573

RESUMEN

To continuously monitor, identify, and classify a wide range of areas all day and satisfy the hyperspectral remote sensing requirements in disaster reduction, environment, agriculture, forestry, marine, and resource areas, the authors participated in a pre-research program for full spectrum hyperspectral detection in geostationary orbit. As part of the program, the authors designed a cryogenic infrared spectrometer working at the diffraction limit. Such spectrometer complied with prism dispersion, exhibiting a 120 mm long slit, 2.5-5 µm band range, and 50 nm minimum spectral resolution. The spectrometer should overtake a temperature variation of 143 K for its assembly temperature at 293 K and the working temperature at 150 K. Low-temperature invar and carbon fiber were adopted as the framework material. The spectrometer was composed of two reflective Zerodur mirrors and one CaF2 Fery prism. Compensation mounts were developed for the reflective mirrors, while a spring-loaded autocentering cryogenic lens mount was designed for a CaF2 prism. CaF2 material exhibits a large linear expansion coefficient, making its mount difficult to design. The alignment requirements of the system were described, and the calculations that ensure the lenses undergo both appropriate stresses and temperature differences were presented. Structural thermal optical performance analysis was also conducted to assess the degradation in optical performance caused by temperature variation to verify the overall optomechanical design.

10.
Sensors (Basel) ; 19(15)2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31357508

RESUMEN

Vehicle detection in aerial images plays a significant role in civil and military applications and it faces many challenges including the overhead-view perspective, the highly complex background, and the variants of vehicles. This paper presents a robust vehicle detection scheme to overcome these issues. In the detection stage, we propose a novel algorithm to generate oriented proposals that could enclose the vehicle objects properly as rotated rectangles with orientations. To discriminate the object and background in the proposals, we propose a modified vector of locally aggregated descriptors (VLAD) image representation model with a recently proposed image feature, i.e., local steering kernel (LSK) feature. By applying non-maximum suppression (NMS) after classification, we show that each vehicle object is detected with a single-oriented bounding box. Experiments are conducted on aerial images to compare the proposed method with state-of-art methods and evaluate the impact of the components in the model. The results have proven the robustness of the proposed method under various circumstances and the superior performance over other existing vehicle detection approaches.

11.
Appl Opt ; 56(4): 1028-1036, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28158109

RESUMEN

Thermal control and temperature uniformity are important factors for aerial cameras. This paper describes the problems with existing systems and introduces modifications. The modifications have improved the temperature uniformity from 12.8°C to 4.5°C, and they enable images to be obtained at atmospheric and low pressures (35.4 KPa). First, thermal optical analysis of the camera is performed by using the finite element analysis method. This modeled the effect of temperature level and temperature gradient on imaging. Based on the results of the analysis, the corresponding improvements to the thermal control measures are implemented to improve the temperature uniformity. The relationship between the temperature control mode and temperature uniformity is analyzed. The improved temperature field corresponding to the thermal optical analysis is studied. Taking into account that the convection will be affected by the low pressure, the paper analyzes the thermal control effect, and imaging results are obtained in low pressure. The experimental results corroborate the analyses.

12.
Appl Opt ; 54(16): 4960-5, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26192651

RESUMEN

Step and stare imaging with staring arrays has become the main approach to realizing wide area coverage and high resolution imagery of potential targets. In this paper, a backscanning step and stare imaging system is described. Compared with traditional step and stare imaging systems, this system features a much higher frame rate by using a small-sized array. In order to meet the staring requirements, a fast steering mirror is employed to provide backscan motion to compensate for the image motion caused by the continuously scanning of the gimbal platform. According to the working principle, the control system is designed to step/stare the line of sight at a high frame rate with a high accuracy. Then a proof-of-concept backscanning step and stare imaging system is established with a CMOS camera. Finally, the modulation transfer function of the imaging system is measured by the slanted-edge method, and a quantitative analysis is made to evaluate the performance of image motion compensation. Experimental results confirm that both high frame rate and image quality improvement can be achieved by adopting this method.

13.
Materials (Basel) ; 15(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35057392

RESUMEN

The non-linear dynamic behavior of a hybrid air bearing-rotor system is very complicated and requires careful attention when designing to avoid spindle failure, especially under ultra-high speed condition. In this paper, the rotor trajectory of a hybrid air bearing-rotor system is obtained by solving the unsteady Reynolds equation and motion equations simultaneously. The typical non-linear behavior of hybrid air bearing-rotor systems is illustrated with the analysis of the rotor trajectory, the phase angle, time domain vibration and power spectral density. Furthermore, the influences of the rotor mass, external load, rotating speed and unbalanced mass on the non-linear behavior are investigated. Finally, the effect of structure parameters on the rotor trajectory is studied and the phenomenon under ultra-high speed condition is illustrated, which provides some new guidelines on the ultra-high speed air spindle design.

14.
Materials (Basel) ; 15(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35268991

RESUMEN

The spiral-grooved structure has been proposed for promoting the load capacity and stiffness of hybrid air journal bearings. In this paper, the dynamic characteristics of spiral-grooved hybrid bearings are first calculated. The stability criteria of the bearings are proposed and analyzed with different groove structure parameters using frequency domain analysis. It is found that the length of the spiral-groove has significant influence on the stability of the spindle system. Finally, the critical speed of the spiral-grooved hybrid bearing and rotor system is analyzed, and an experiment is carried out to validate the proposed model, finding that groove structure can promote the stability of the air bearing systems.

15.
J Hazard Mater ; 417: 125975, 2021 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-33992009

RESUMEN

Mercury (Hg) is one of the most hazardous pollutants, widely distributed in water, atmosphere, and soil, while the Hg contents from different sources are greatly different. Until now, numerous reported methods are only suitable for a kind of sample because they cannot reconcile sensitivity and linear range. In this work, a tail-extensible DNA fluorescent probe for "turn on" detection of Hg2+ with tunable dynamic range and high sensitivity was developed, which was based on segmental hybridization between silver nanoclusters (AgNCs)-covered DNA and different guanine-rich DNAs. By adding adenine-guanine-cytosine (AGC) base repeats as a tail of the guanine-rich DNA, the formation constant of T-Hg2+-T complex was effectively modulated within two orders of magnitude. Based on it, a tunable dynamic range from 0.035 to 0.2 pM to 8.0-120.0 pM was achieved by combining four fluorescent probes with different tail lengths. The Hg2+contents from different sources were successfully measured. This evidenced the proposed sensor's application toward wide-field detection, which is useful for the direct and objective comparison of results from different sources, and therefore providing a way for solving the shortcomings of reported methods for Hg2+ detection. Additionally,this present method is simple, cost-effective and time-saving, ultrasensitive and highly selective, which is favorable for expanding its applications and subsequent mercury pollution control.


Asunto(s)
Técnicas Biosensibles , Mercurio , Nanopartículas del Metal , ADN , Colorantes Fluorescentes , Límite de Detección , Agua
16.
Talanta ; 199: 238-243, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30952252

RESUMEN

Human epidermal growth factor receptor-2 (HER2) has been recognized as an important biomarker for the early diagnosis and management of breast cancer. However, there is still challenge in the clinical detection of HER2. In this work, a simple strategy for "turn on" fluorescent detection of HER2 with ultra-sensitivity and high specificity was developed. Herein, HER2-binding aptamer (HApt) and DNA2 containing G-rich sequences, templated sequences for Ag nanoclusters (AgNCs), and complementary bases at both ends were involved to achieve the double stranded DNA templated AgNCs (dsDNA-AgNCs) as a fluorescence probe for HER2 detection. In the presence of HER2, the highly specific binding of HER2 to HApt caused HApt separating from dsDNA-AgNCs, resulting in the folding of DNA2-AgNCs because of the complementary bases at both ends, which led to AgNCs' proximity to G-rich sequences, and therefore the enhanced fluorescence intensity. By monitoring the change in fluorescence signal (ΔF), HER2 was measured, and a linear range from 8.5 fM to 225 fM with a limit of detection (LOD) 0.0904 fM was obtained. More significantly, the detection of HER2 in serum samples was achieved with high accuracy, and the breast cancer patients were successfully discriminated from healthy persons. In summary, this strategy is simple, time-saving, cost-effective, ultrasensitive, specific, universal and more applicable for the detection of HER2. Therefore, we expect this present aptasensor can be used in the clinical detection of biomakers, which lays a potential foundation for the early diagnosis of cancer.


Asunto(s)
Aptámeros de Nucleótidos/química , ADN/química , Fluorescencia , Colorantes Fluorescentes/química , Nanopartículas del Metal/química , Receptor ErbB-2/análisis , Receptor ErbB-2/genética , Plata/química , Secuencia de Bases , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda