Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Environ Monit Assess ; 195(2): 254, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36592254

RESUMEN

This study used red mud modified with chitosan (RM/CS) as a novel adsorbent to remove Ni(II) ions from an aqueous solution. The adsorbent was characterized by the techniques of the BET method, X-ray diffraction (XRD), and scanning electron microscopy (SEM) analysis. According to the findings, the surface area of RM/CS is nearly doubled compared to CS, from 68.6 to 105.7 m2.g-1. The Ni(II) batch adsorption of RM/CS was performed as a function of pH value, contact time, and volume of adsorbent. Three isotherm adsorption models (Langmuir, Freundlich, and Sips) and three kinetic models (the pseudo-first-order, the pseudo-second-order, and the intra-diffusion models) were fitted with the experimental data to calculate the maximum adsorption capacity and to estimate the uptake in nature. The Langmuir monolayer adsorption capacity for Nickel (II) is 31.66 mg.g-1 at a pH of 6.0, with an adsorption time of 180 min and a temperature of 323 K. The Ni(II) adsorption on RM/CS is the exothermic process and is controlled by the intra-diffusion model.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Quitosano/química , Monitoreo del Ambiente , Níquel/química , Temperatura , Iones , Adsorción , Cinética , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/química , Termodinámica
2.
Environ Monit Assess ; 195(12): 1530, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38006447

RESUMEN

ZSM-5 zeolite was successfully synthesized from bentonite clay sourced from Lam Dong Province, Vietnam, using the hydrothermal method at 170 °C for 18 h. The synthesized ZSM-5 (SiO2/Al2O3 ratio ~ 34) exhibited a single phase with high crystallinity (91.8%), and a clear and uniform shape. In a detailed examination of the synthesized material's Pb(II) adsorptive capacity, various factors were taken into account, including pH, interaction time, ionic strength, and the amount of adsorbent. Isotherms and kinetics were examined to elucidate the uptake behavior. Study results suggested that Pb(II) ion uptake by ZSM-5 was most appropriately described by the Sips isotherm and intraparticle diffusion kinetic models. The calculated maximum monolayer adsorption capacity according to the Langmuir isotherm model was 48.36 mg/g. Furthermore, the adsorption mechanisms of Pb(II) on ZSM-5 involving electrostatic interactions, ion exchange, and diffusion into pores were demonstrated using the analytical techniques before and after Pb(II) adsorption. These findings demonstrate that ZSM-5 synthesized from bentonite clay exhibits an excellent adsorption capacity for Pb(II), resulting in promising applications for treating drinking water or aqueous industrial waste containing Pb(II) ions.


Asunto(s)
Bentonita , Arcilla , Contaminantes Químicos del Agua , Adsorción , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Cinética , Plomo , Dióxido de Silicio , Pueblos del Sudeste Asiático , Vietnam , Agua , Contaminantes Químicos del Agua/análisis
3.
Environ Monit Assess ; 195(11): 1266, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37787870

RESUMEN

Kinetic studies play an instrumental role in determining the most appropriate reaction rate model for industrial-scale applications. This study focuses on the kinetics of methylene blue (MB) adsorption from aqueous solutions by biochar derived from jackfruit peel. Various kinetic models, including pseudo-first-order (PFO), pseudo-second-order (PSO), intra-diffusion, and Elovich models, were applied to study MB adsorption kinetics of jackfruit peel biochar. The experiments were performed with two initial concentrations of MB (24.23 mg/L and 41.42 mg/L) over a span of 240 min. Our findings emphasized that the Elovich model provided the best fit of the experimental data for MB adsorption. When compared to other materials, biochar from jackfruit peel emerges as an eco-friendly adsorbent for dye decolorization, with potential applications in the treatment of environmental pollution.


Asunto(s)
Artocarpus , Contaminantes Químicos del Agua , Azul de Metileno , Cinética , Concentración de Iones de Hidrógeno , Monitoreo del Ambiente , Agua , Adsorción
4.
Langmuir ; 38(50): 15604-15613, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36507853

RESUMEN

Manganese dioxide nanomaterials have wide applications in many areas from catalysis and Li-ion batteries to gas sensing. Understanding the crystallization pathways, morphologies, and formation of defects in their structure is particularly important but still a challenging issue. Herein, we employed an arsenal of X-ray diffraction (XRD), scanning electron microscopy (SEM), neutron diffraction, positron annihilation spectroscopies, and ab initio calculations to investigate the evolution of the morphology and structure of α-MnO2 nanomaterials prepared via reduction of KMnO4 solution with C2H5OH prior to being annealed in air at 200-600 °C. We explored a novel evolution that α-MnO2 nucleation can be formed even at room temperature and gradually developed to α-MnO2 nanorods at above 500 °C. We also found the existence of H+ or K+ ions in the [1 × 1] tunnels of α-MnO2 and observed the simultaneous presence of Mn and O vacancies in α-MnO2 crystals at low temperatures. Increasing the temperature removed these O vacancies, leaving only the Mn vacancies in the samples.

5.
Environ Res ; 206: 112631, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973199

RESUMEN

TiO2 is a well-known semiconductor used widely in the photocatalyst field, but its photocatalytic applications are hampered by a fast electron-hole recombination rate and low visible light absorption due to a wide-band-gap energy. Herein, we present a simple, low cost, and green approach to obtain carbon dots from microalgae, namely microalgae-based carbon dots (MCDs), using an unprecedented microwave-assisted treatment. The MCDs were successfully decorated on the surface of TiO2 nanoparticles. The as-prepared composite exhibited a superior photodegradation of methylene blue, compared with pristine TiO2 (83% and 27%, respectively) under visible light irradiation. The MCDs in TiO2-MCDs serve as electron reservoirs to trap photoinduced electrons and as photosensitizers for the improvement of visible light absorption; both factors play an important role in the improvement of the TiO2 photocatalytic activity. Furthermore, the as-prepared composite photocatalyst also exhibits high photostability and recyclability during the photodegradation of methylene blue. Therefore, this work provides an original approach to the development of environmentally friendly and highly effective photocatalysts for the treatment of various organic pollutants, which can go a long way toward ensuring a safe and sustainable environment.


Asunto(s)
Microalgas , Nanopartículas , Carbono , Catálisis , Fotólisis , Titanio
6.
RSC Adv ; 13(30): 20565-20574, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37435373

RESUMEN

In the present study, Lam Dong bentonite clay was utilized as a novel resource to effectively synthesize microporous ZSM-5 zeolite (Si/Al ∼ 40). The effects of aging and hydrothermal treatment on the crystallization of ZSM-5 were carefully investigated. Herein, the aging temperatures of RT, 60, and 80 °C at time intervals of 12, 36, and 60 h, followed by high temperature hydrothermal treatment (170 °C) for 3-18 h were studied. Techniques such as XRD, SEM-EDX, FTIR, TGA-DSC, and BET-BJH were applied to characterize the synthesized ZSM-5. Bentonite clay showed great benefits as a natural resource for ZSM-5 synthesis and is cost efficient, environment friendly, and has a large reserves. The form, size, and crystallinity of ZSM-5 were greatly influenced by aging and hydrothermal treatment conditions. The optimal ZSM-5 product had high purity, crystallinity (∼90%), and porosity (BET ∼380 m2 g-1) as well as thermal stability, which are beneficial for adsorptive and catalytic applications.

7.
Chemosphere ; 287(Pt 3): 132279, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34563768

RESUMEN

Red mud modified by chitosan (RM/CS) was utilized as an adsorbent to effectively remove Pb(II) from aqueous solution. The surface area of RM/CS was found to significantly increase by more than 50% compared to that of original red mud. Different factors that affected the Pb(II) removal on this material, such as initial Pb(II) concentration, pH, and contact time, were investigated. The pseudo-first-order, pseudo-second-order, and intra-diffusion models were used to fit the experimental data to investigate the Pb(II)'s removal kinetics. The Pb(II) removal followed the intra-diffusion model. Additionally, the non-zero C value obtained from this model indicates that the removal was controlled by many different mechanisms. We also found that the interaction of Pb(II) and carbonate group on the material's surface played a primary role once the adsorption equilibrium was reached. Finally, the maximum adsorptive capacity was found to be about 209 mg/g. This obtained value is higher than those obtained for some other materials. Therefore, the present RM/CS should be a potential material for removing Pb(II) from aqueous solution.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Plomo
8.
Chemosphere ; 286(Pt 3): 131766, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34416581

RESUMEN

This work studies the Pb(II) removal onto bentonite clay modified by hexadecyl trimethyl ammonium bromide (HDTMA). Characterizations of the unmodified and modified materials were performed by using XRD, SEM, TG-DSC, FT-IR, and BET surface area analyses. Factors influencing the uptake of Pb(II) from aqueous solution, such as pHsolution, ion strength, uptake time, adsorbent dosage, and initial Pb(II) concentration, were examined. The obtained results showed that bentonite clay was successfully modified by HDTMA, resulting in an increase in its surface area by about 70 %. The Pb(II) adsorption onto modified bentonite clay reached equilibrium at pH = 5.0 after 120 min. Studies within the isotherm and kinetic models demonstrated that the adsorption followed the Sips isotherm and pseudo-second-order kinetic models. The maximum monolayer adsorption capacity calculated from the Langmuir model at 30 °C was 25.8 mg/g, which is much higher than that obtained for the unmodified sample (18.9 mg/g). The FT-IR and TG-DSC analyses indicated that the formation of inner-sphere complexes plays a fundamental role in the mechanism of Pb(II) uptake onto HDTMA-bentonite clay. This mechanism of Pb(II) adsorption was further investigated, for the first time, by using the positron annihilation lifetime (PAL) and electron momentum (EMD) measurements. The PAL and EMD analyses indicated that the existence of Al and Si mono-vacancies in the HDTMA-bentonite should have essential contributions to the adsorption mechanism. In particular, we found a very interesting mechanism that the Pb(II) adsorption should occur inside the interlayer spaces of the HDTMA-bentonite.


Asunto(s)
Bentonita , Contaminantes Químicos del Agua , Arcilla , Plomo , Espectroscopía Infrarroja por Transformada de Fourier
9.
J Anal Methods Chem ; 2021: 6613154, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33708452

RESUMEN

The present paper reports the fabrication of inverse opal photonic crystals (IOPCs) by using SiO2 spherical particles with a diameter of 300 nm as an opal photonic crystal template and poly(ethylene glycol) diacrylate (PEGDA) as an inverse opal material. Characteristics and fluorescence properties of the fabricated IOPCs were investigated by using the Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), reflection spectroscopy, and fluorescence microscopy. The results clearly showed that the IOPCs were formed comprising of air spheres with a diameter of ∼270 nm. The decrease in size led to a decrease in the average refractive indexes from 1.40 to 1.12, and a remarkable stopband blue shift for the IOPCs was thus achieved. In addition, the obtained results also showed a fluorescence enhancement over 7.7-fold for the Fluor® 488 dye infiltrated onto the IOPCs sample in comparison with onto the control sample.

10.
Environ Sci Pollut Res Int ; 28(45): 63504-63515, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32720021

RESUMEN

The present work investigates the primary adsorption mechanisms of lead (II) and cadmium (II) cations onto pomelo fruit peel (PFP) from aqueous solution. pH, adsorption time, ion strength, and initial metal cation concentrations, which are factors affecting the uptake of these cations, are investigated. Results show that pH and ion strengths strongly affect the removal of these cations from aqueous solution. Different isotherm adsorption models, such as Langmuir, Freundlich, and Sips, are utilized to fit the experimental data in order to determine the adsorption in nature. The Langmuir monolayer adsorption capacities are found to be 47.18 mg/g for lead (II) and 13.35 mg/g for cadmium (II). Kinetic and thermodynamic studies based on a combination of FT-IR and TG-DSC spectroscopies demonstrate that electrostatic attraction plays a primary adsorption mechanism of lead (II) and cadmium (II) cations onto pomelo fruit peel.


Asunto(s)
Citrus , Contaminantes Químicos del Agua , Adsorción , Cadmio , Cationes , Frutas , Concentración de Iones de Hidrógeno , Cinética , Plomo , Espectroscopía Infrarroja por Transformada de Fourier
11.
Chemosphere ; 257: 127147, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32473410

RESUMEN

In this report, the adsorption of Cr(VI) onto MnO2/CS nanocomposite material from aqueous solution is investigated. All the factors, which affect the adsorption, such as pH, adsorption time, Cr(VI) initial concentration and adsorbent dosage, are also examined. The results obtained show that the Cr(VI) uptake is strongly affected by pH and ion strength. Analysis within the nonlinear isotherm models indicates that the Sips isotherm combining with the Langmuir and Freundlich models offer the best fit to the experimental data due to the obtained highest R2 and smallest RMSE and χ2 values. The calculated Langmuir monolayer adsorption capacity is 61.56 mg g-1 at pH of 2.0 and adsorption time of 120 min. Moreover, the mechanism studies by combining theoretical models with analytical spectroscopies reveal that the electrostatic attraction plays the important role to the uptake of Cr(VI) onto MnO2/CS nanocomposite. Therefore, the present nanocomposite material can be applied to remove total Cr from wastewater produced by the galvanized manufacturing factory with a relatively high efficiency.


Asunto(s)
Cromo/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Quitosano , Concentración de Iones de Hidrógeno , Cinética , Compuestos de Manganeso , Nanocompuestos , Óxidos/análisis , Aguas Residuales/análisis , Agua/análisis
12.
RSC Adv ; 9(44): 25847-25860, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35530102

RESUMEN

In this study, the biosorption mechanisms of methylene blue (MB) and Cr(iii) onto pomelo peel collected from our local fruits are investigated by combining experimental analysis with ab initio simulations. Factors that affect the adsorption such as pH, adsorption time, adsorbent dosage and initial adsorbate concentration, are fully considered. Five isotherm models-Langmuir, Freundlich, Sips, Temkin, and Dubinin-Radushkevich-are employed to estimate the capacity of pomelo peel adsorption, whereas four kinetic models-pseudo-first-order, pseudo-second-order, Elovich and intra-diffusion models-are also used to investigate the mechanisms of the uptake of MB and Cr(iii) onto the pomelo fruit peel. The maximum biosorption capacities calculated from the Langmuir models for MB and Cr(iii) at 303 K are, 218.5 mg g-1 and 11.3 mg g-1, respectively. In particular, by combining, for the first time, the experimental FT-IR spectra with those obtained from ab initio calculations, we are able to demonstrate that the primary adsorption mechanisms of the uptake of MB onto pomelo fruit peel are electrostatic attraction and hydrogen-bond formations, whereas the adsorption mechanisms for Cr(iii) are electrostatic attraction and n-d interactions.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda