Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Mol Pharm ; 21(7): 3661-3673, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38858241

RESUMEN

Dacarbazine (DTIC) is a widely prescribed oncolytic agent to treat advanced malignant melanomas. Nevertheless, the drug is known for exhibiting low and pH-dependent solubility, in addition to being photosensitive. These features imply the formation of the inactive photodegradation product 2-azahypoxanthine (2-AZA) during pharmaceutical manufacturing and even drug administration. We have focused on developing novel DTIC salt/cocrystal forms with enhanced solubility and dissolution behaviors to overcome or minimize this undesirable biopharmaceutical profile. By cocrystallization techniques, two salts, two cocrystals, and one salt-cocrystal have been successfully prepared through reactions with aliphatic carboxylic acids. A detailed structural study of these new multicomponent crystals was conducted using X-ray diffraction (SCXRD, PXRD), spectroscopic (FT-IR and 1H NMR), and thermal (TG and DSC) analyses. Most DTIC crystal forms reported display substantial enhancements in solubility (up to 19-fold), with faster intrinsic dissolution rates (from 1.3 to 22-fold), contributing positively to reducing the photodegradation of DTIC in solution. These findings reinforce the potential of these new solid forms to enhance the limited DTIC biopharmaceutical profile.


Asunto(s)
Cristalización , Dacarbazina , Fotólisis , Solubilidad , Difracción de Rayos X , Dacarbazina/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectroscopía de Resonancia Magnética , Rastreo Diferencial de Calorimetría
2.
Chemosphere ; 324: 138278, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36878364

RESUMEN

The excessive use of pesticides and the demand for environmentally friendly compounds have driven the focus to detailed studies of the environmental destination of these compounds. Degradation by hydrolysis of pesticides, when released into the soil, can result in the formation of metabolites with potentially adverse effects on the environment. Moving in this direction, we investigated the mechanism of acid hydrolysis of the herbicide ametryn (AMT) and predicted the toxicities of metabolites through experimental and theoretical approaches. The formation of ionized hydroxyatrazine (HA) occurs with the release of the SCH3- group and the addition of H3O+ to the triazine ring. The tautomerization reactions privileged the conversion of AMT into HA. Furthermore, the ionized HA is stabilized by an intramolecular reaction that provides the molecule in two tautomeric states. Experimentally, the hydrolysis of AMT was obtained under acidic conditions and at room temperature with HA as the main product. HA was isolated in a solid state through its crystallization as organic counterions. The mechanism of conversion of AMT to HA and the experimental investigation of the reaction kinetics allowed us to determine the dissociation of CH3SH as the rate-controlling step in the degradation process that culminates in a half-life between 7 and 24 months under typical acid soil conditions of the Brazilian Midwest - region with strong agricultural and livestock vocation. The keto and hydroxy metabolites showed substantial thermodynamic stability and a decrease in toxicity compared to AMT. We hope that this comprehensive study will support the understanding of the degradation of s-triazine-based pesticides.


Asunto(s)
Herbicidas , Triazinas , Hidrólisis , Estructura Molecular , Cinética , Triazinas/química , Herbicidas/toxicidad , Suelo
3.
Int J Pharm ; 605: 120790, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34116180

RESUMEN

Diltiazem (DIL) is a calcium channel blocker antihypertensive drug commonly used in the treatment of cardiovascular disorders. Due to the high solubility and prompt dissolution of the commercial form hydrochloride (DIL-HCl) that is closely related to short elimination drug half-life, this API is known for exhibiting an unfitted pharmacokinetic profile. In an attempt to understand how engineered multicomponent ionic crystals of DIL with dicarboxylic acids can minimize these undesirable biopharmaceutical attributes, herein, we have focused on the development of less soluble and slower dissolving salt/cocrystal forms. By the traditional solvent evaporation method, two hydrated salts of DIL with succinic and oxalic acids (DIL-SUC-H2O and DIL-OXA-H2O), and one salt-cocrystal with fumaric acid (DIL-FUM-H2FUM) were successfully prepared. An in-depth crystallographic description of these new solid forms was conducted through single and powder X-ray diffraction (SCXRD, PXRD), Hirshfeld surface (HS) analysis, energy framework (EF) calculations, Fourier Transform Infrared (FT-IR) spectroscopy, and thermal analysis (TG, DSC, and HSM). Structurally, the inclusion of dicarboxylic acids in the crystal structures provided the formation of 2D-sheet assemblies, where ionic pairs (DIL+/anion-) are associated with each other via H-bonding. Consequently, a substantial lowering in both solubility (16.5-fold) and intrinsic dissolution rate (13.7-fold) of the API has been achieved compared to that of the hydrochloride salt. These findings demonstrate the enormous potential of these solid forms in preparing of novel modified-release pharmaceutical formulations of DIL.


Asunto(s)
Ácidos Dicarboxílicos , Diltiazem , Rastreo Diferencial de Calorimetría , Polvos , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
4.
Int J Pharm ; 587: 119694, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32726610

RESUMEN

Furosemide (FSM) is a biopharmaceutical classification system (BCS) class IV drug, being a potent loop diuretic used in the treatment of congestive heart failure and edema. Due to its low solubility and permeability, FSM is known for exhibiting poor oral bioavailability. In order to overcome or even minimize these undesirable biopharmaceutical attributes, in this work we have focused on the development of more soluble and permeable multicomponent solid forms of FSM. Using solvent evaporation as crystallization method, a salt and a cocrystal of FSM with imidazole (IMI) and 5-fluorocytosine (5FC) coformers, named FSM-IMI and FSM-5FC, respectively, were successfully prepared. A detailed structural study of these new solid forms was conducted using single and powder X-ray diffraction (SCXRD, PXRD), Fourier Transform Infrared (FT-IR) and proton Nuclear Magnetic Resonance (1H NMR) spectroscopy and thermal analysis (thermogravimetry, differential scanning calorimetry and hot-stage microscopy). Both FSM-IMI and FSM-5FC showed substantial enhancements in the solubility (up 118-fold), intrinsic dissolution (from 1.3 to 2.6-fold) and permeability (from 2.1 to 2.8-fold), when compared to the pure FSM. These results demonstrate the potential of these new solid forms to increase the limited bioavailability of FSM.


Asunto(s)
Furosemida , Preparaciones Farmacéuticas , Rastreo Diferencial de Calorimetría , Diuréticos , Permeabilidad , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda