Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Curr Opin Cell Biol ; 4(4): 581-6, 1992 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-1419038

RESUMEN

The final orientation that a protein assumes in the membrane of the endoplasmic reticulum is determined by a few types of signal sequences and their respective interactions with the membrane insertion complex. Membrane insertion occurs via a series of discrete steps, some of which are regulated by GTP- and ATP-binding proteins. Analysis of the protein components in proximity to nascent secretory and membrane proteins has revealed novel proteins in the endoplasmic reticulum that may form part of the membrane insertion complex.


Asunto(s)
Retículo Endoplásmico/ultraestructura , Células Eucariotas/química , Membranas Intracelulares/química , Proteínas de la Membrana/química , Animales , Células Eucariotas/ultraestructura , Membranas Intracelulares/ultraestructura
2.
Trends Cell Biol ; 6(4): 142-7, 1996 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15157477

RESUMEN

To learn about the molecular mechanism of protein translocation across the membrane of the endoplasmic reticulum (ER), the environment of nascent chains during the translocation process has been characterized using a variety of crosslinking approaches. These techniques have led to the identification of several proteins that interact transiently with the newly synthesized protein in the cytosol, during its passage across the membrane of the ER and in the ER lumen. Furthermore, lipids have been found to be in contact with membrane-inserted nascent chains, suggesting that the polypeptide enters the membrane in a protein-lipid interface.

3.
Trends Cell Biol ; 8(10): 410-5, 1998 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9789330

RESUMEN

Export signal sequences target newly synthesized proteins to the endoplasmic reticulum of eukaryotic cells and the plasma membrane of bacteria. All signal sequences contain a hydrophobic core region, but, despite this, they show great variation in both overall length and amino acid sequence. Recently, it has become clear that this variation allows signal sequences to specify different modes of targeting and membrane insertion and even to perform functions after being cleaved from the parent protein. This review argues that signal sequences are not simply greasy peptides but sophisticated, multipurpose peptides containing a wealth of functional information.


Asunto(s)
Proteínas de la Membrana , Señales de Clasificación de Proteína/fisiología , Secuencia de Aminoácidos , Animales , Presentación de Antígeno , Proteínas Bacterianas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Escherichia coli/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Mamíferos/metabolismo , Datos de Secuencia Molecular , Señales de Clasificación de Proteína/química , Proteínas/metabolismo , Serina Endopeptidasas/metabolismo , Relación Estructura-Actividad
4.
J Cell Biol ; 113(2): 229-33, 1991 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-1849137

RESUMEN

The signal sequence of nascent preprolactin interacts with the 54-kD protein of the signal recognition particle (SRP54). To identify the domain or site on SRP54 that interacts with the signal sequence we used a photocross-linking approach followed by limited proteolysis and immunoprecipitation using anti-peptide antibodies specific for defined regions of SRP54. We found that the previously identified methionine-rich RNA-binding domain of SRP54 (SRP54M domain) also interacts with the signal sequence. The smallest fragment that was found to be crosslinked to the signal sequence comprised the COOH-terminal 6-kD segment of the SRP54M domain. No cross-link to the putative GTP-binding domain of SRP54 (SRP54G domain) was found. Proteolytic cleavage between the SRP54M domain and SRP54G domain did not impair the subsequent interaction between the signal sequence and the SRP54M domain. Our results show that both the RNA binding and signal sequence binding functions of SRP54 are performed by the SRP54M domain.


Asunto(s)
Metionina/metabolismo , Señales de Clasificación de Proteína/metabolismo , Ribonucleoproteínas/metabolismo , Animales , Sistema Libre de Células , Perros , Pruebas de Precipitina , Prolactina/metabolismo , Precursores de Proteínas/metabolismo , Serina Endopeptidasas/metabolismo , Partícula de Reconocimiento de Señal
5.
J Cell Biol ; 106(6): 1813-20, 1988 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-3290220

RESUMEN

I gamma CAT is a hybrid protein that inserts into the membrane of the endoplasmic reticulum as a type II membrane protein. These proteins span the membrane once and expose the NH2-terminal end on the cytoplasmic side and the COOH terminus on the exoplasmic side. I gamma CAT has a single hydrophobic segment of 30 amino acid residues that functions as a signal for membrane insertion and anchoring. The signal-anchor region in I gamma CAT was analyzed by deletion mutagenesis from its COOH-terminal end (delta C mutants). The results show that the 13 amino acid residues on the amino-terminal side of the hydrophobic segment are not sufficient for membrane insertion and translocation. Mutant proteins with at least 16 of the hydrophobic residues are inserted into the membrane, glycosylated, and partially proteolytically processed by a microsomal protease (signal peptidase). The degree of processing varies between different delta C mutants. Mutant proteins retaining 20 or more of the hydrophobic amino acid residues can span the membrane like the parent I gamma CAT protein and are not proteolytically processed. Our data suggest that in the type II membrane protein I gamma CAT, the signals for membrane insertion and anchoring are overlapping and that hydrophilic amino acid residues at the COOH-terminal end of the hydrophobic segment can influence cleavage by signal peptidase. From this and previous work, we conclude that the function of the signal-anchor sequence in I gamma CAT is determined by three segments: a positively charged NH2 terminus, a hydrophobic core of at least 16 amino acid residues, and the COOH-terminal flanking hydrophilic segment.


Asunto(s)
Endopeptidasas/fisiología , Retículo Endoplásmico/fisiología , Antígenos de Histocompatibilidad Clase II/fisiología , Glicoproteínas de Membrana/fisiología , Proteínas de la Membrana , Serina Endopeptidasas , Secuencia de Aminoácidos , Animales , Sistema Libre de Células , Análisis Mutacional de ADN , Glicosilación , Técnicas In Vitro , Glicoproteínas de Membrana/clasificación , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/fisiología , Solubilidad , Relación Estructura-Actividad
6.
J Cell Biol ; 87(2 Pt 1): 498-502, 1980 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-7000796

RESUMEN

Previous reports have shown that rough microsomes treated with high salt (Warren and Dobberstein, 1978, Nature, 273:569-571) or proteases (Walter et al., 1979, Proc. Natl. Acad. Sci, U. S. A., 76:1,795) are unable to vectorially translocate nascent proteins. Readdition of the high salt or protease extracts restored activity to such inactive rough microsomes. A detailed study was carried out to determine how this factor interacts with the rough microsomal membrane. Proteolytic cleavage was found to be necessary but not sufficient to remove this factor from the membrane. A subsequent treatment with high salt had to be carried out. Endogenous (pancreatic) protease could effect the required cleavage, but low levels of trypsin, clostripain, or elastase were far more efficient. Several proteases were not effective. The minimum level of salt (after proteolysis) required to solubilize the active factor was approximately 200 mM KCl. Salt extracts prepared by treatment with one of the effective proteases were capable of restoring activity to inactive microsomes produced by treatment with one of the others.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas/metabolismo , Animales , Transporte Biológico , Perros , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Páncreas/metabolismo , Páncreas/ultraestructura , Péptido Hidrolasas/metabolismo , Unión Proteica/efectos de los fármacos , Sales (Química)/farmacología
7.
J Cell Biol ; 87(2 Pt 1): 503-8, 1980 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-7430254

RESUMEN

When rough microsomes are subjected to limited proteolysis and high salt, a soluble fraction can be separated from the membrane. Neither fraction alone is capable of vectorially translocating nascent peptides. When the soluble extract is recombined with the residual membrane fraction, translocating activity is restored. Standard biochemical techniques were used to identify and characterize the active component derived by treating rough microsomes with elastase and high salt. The active factor is a peptide fragment with an apparent molecular weight of 60,000. It represents the cytoplasmic domain of a larger membrane protein. The fragment is basic and has at least one accessible sulfhydryl group. These characteristics facilitated its purification and identification as a membrane component required for translocation of nascent peptides across microsomal membranes.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/aislamiento & purificación , Proteínas/metabolismo , Animales , Transporte Biológico , Cromatografía/métodos , Perros , Etilmaleimida/farmacología , Proteínas de la Membrana/metabolismo , Peso Molecular , Páncreas/ultraestructura , Polietilenglicoles/farmacología
8.
J Cell Biol ; 67(3): 835-51, 1975 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-811671

RESUMEN

Fractionation of MOPC 41 DL-1 tumors revealed that the mRNA for the light chain of immunoglobulin is localized exclusively in membrane-bound ribosomes. It was shown that the translation product of isolated light chain mRNA in a heterologous protein-synthesizing system in vitro is larger than the authentic secreted light chain; this confirms similar results from several laboratories. The synthesis in vitro of a precursor protein of the light chain is not an artifact of translation in a heterologous system, because it was shown that detached polysomes, isolated from detergent-treated rough microsomes, not only contain nascent light chains which have already been proteolytically processed in vivo but also contain unprocessed nascent light chains. In vitro completion of these nascent light chains thus resulted in the synthesis of some chains having the same mol wt as the authentic secreted light chains, because of completion of in vivo proteolytically processed chains and of other chains which, due to the completion of unprocessed chains, have the same mol wt as the precursor of the light chain. In contrast, completion of the nascent light chains contained in rough microsomes resulted in the synthesis of only processed light chains. Taken together, these results indicate that the processing activity is present in isolated rough microsomes, that it is localized in the membrane moiety of rough microsomes, and, therefore, that it was most likely solubilized during detergent treatment used for the isolation of detached polysomes. Furthermore, these results established that processing in vivo takes place before completion of the nascent chain. The data also indicate that in vitro processing of nascent chains by rough microsomes is dependent on ribosome binding to the membrane. If the latter process is interfered with by aurintricarboxylic acid, rough microsomes also synthesize some unprocessed chains. The data presented in this paper have been interpreted in the light of a recently proposed hypothesis. This hypothesis, referred to as the signal hypothesis, is described in greater detail in the Discussion section.


Asunto(s)
Membrana Celular/metabolismo , Cadenas Ligeras de Inmunoglobulina/biosíntesis , Proteínas de Neoplasias/biosíntesis , Ribosomas/metabolismo , Animales , Ácido Aurintricarboxílico/farmacología , Retículo Endoplásmico/patología , Cadenas Ligeras de Inmunoglobulina/metabolismo , Ratones , Modelos Biológicos , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/metabolismo , Biosíntesis de Péptidos , Biosíntesis de Proteínas , ARN Mensajero/metabolismo
9.
J Cell Biol ; 67(3): 852-62, 1975 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-811672

RESUMEN

The data presented in this paper demonstrate that native small ribosomal subunits from reticulocytes (containing initiation factors) and large ribosomal subunits derived from free polysomes of reticulocytes by the puromycin-KCl procedures can function with stripped microsomes derived from dog pancreas rough microsomes in a protein-synthesizing system in vitro in response to added IgG light chain mRNA so as to segregate the translation product in a proteolysis-resistant space. No such segregation took place for the translation product of globin mRNA. In addition to their ability to segregate the translation product of a specific heterologous mRNA, native dog pancreas rough microsomes as well as derived stripped microsomes were able to proteolytically process the larger, primary translation product in an apparently correct manner, as evidenced by the identical mol wt of the segregated translation product and the authentic secreted light chain. Segregation as well as proteolytic processing by native and stripped microsomes occurred only during ongoing translation but not after completion of translation. Attempts to solubilize the proteolytic processing activity, presumably localized in the microsomal membrane by detergent treatment, and to achieve proteolytic processing of the completed light chain precursor protein failed. Taken together, these results establish unequivocally that the information for segregation of a translation product is encoded in the mRNA itself, not in the protein-synthesizing apparatus; this provides strong evidence in support of the signal hypothesis.


Asunto(s)
Membrana Celular/metabolismo , Cadenas Ligeras de Inmunoglobulina/metabolismo , Microsomas/metabolismo , Animales , Fraccionamiento Celular , Perros , Ácido Edético , Globinas/biosíntesis , Cadenas Ligeras de Inmunoglobulina/biosíntesis , Páncreas/metabolismo , Cloruro de Potasio , Biosíntesis de Proteínas , Puromicina , ARN Mensajero/metabolismo , Ribosomas/metabolismo
10.
J Cell Biol ; 102(6): 2169-75, 1986 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-3458708

RESUMEN

Invariant (Ii) chain is a membrane-spanning protein that is found associated intracellularly with class II histocompatibility antigens. In the endoplasmic reticulum Ii chain spans the membrane and exposes the NH2 terminus on the cytoplasmic and the COOH terminus on the lumenal side. This orientation across the membrane is demonstrated directly with the monoclonal antibody In-1, which exclusively recognizes the NH2 terminal cytoplasmically exposed part of Ii chain. Membrane insertion of Ii chain requires signal recognition particle and docking protein. When tested in a wheat germ cell free system, signal recognition particle arrests translation of Ii chain. No signal sequence is cleaved from Ii chain upon membrane insertion.


Asunto(s)
Citoplasma/metabolismo , Antígenos de Histocompatibilidad Clase II/aislamiento & purificación , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/aislamiento & purificación , Señales de Clasificación de Proteína/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales , Reacciones Antígeno-Anticuerpo , Antígenos de Histocompatibilidad Clase II/biosíntesis , Antígenos de Histocompatibilidad Clase II/inmunología , Proteínas de la Membrana/inmunología , Ratones , Fragmentos de Péptidos/aislamiento & purificación , Fragmentos de Péptidos/metabolismo , Señales de Clasificación de Proteína/metabolismo , ARN Mensajero/metabolismo , Bazo
11.
J Cell Biol ; 113(1): 25-34, 1991 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-1848865

RESUMEN

Proteins which are inserted and anchored in the membrane of the ER by an uncleaved signal-anchor sequence can assume two final orientations. Type I signal-anchor proteins translocate the NH2 terminus across the membrane while type II signal-anchor proteins translocate the COOH terminus. We investigated the requirements for cytosolic protein components and nucleotides for the membrane targeting and insertion of single-spanning type I signal-anchor proteins. Besides the ribosome, signal recognition particle (SRP), GTP, and rough microsomes (RMs) no other components were found to be required. The GTP analogue GMPPNP could substitute for GTP in supporting the membrane insertion of IMC-CAT. By using a photocrosslinking assay we show that for secreted, type I and type II signal-anchor proteins the presence of both GTP and RMs is required for the release of the nascent chain from the 54-kD subunit of SRP. For two of the proteins studied the release of the nascent chain from SRP54 was accompanied by a new interaction with components of the ER. We conclude that the GTP-dependent release of the nascent chain from SRP54 occurs in an identical manner for each of the proteins studied.


Asunto(s)
Proteínas de la Membrana/metabolismo , Señales de Clasificación de Proteína/fisiología , Animales , Apirasa/farmacología , Secuencia de Bases , Transporte Biológico , Sistema Libre de Células , Retículo Endoplásmico/metabolismo , Guanosina Trifosfato/fisiología , Guanilil Imidodifosfato/metabolismo , Técnicas In Vitro , Datos de Secuencia Molecular , Oligonucleótidos/química , Precursores de Proteínas/metabolismo , Receptores de Transferrina/metabolismo , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/metabolismo , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal , Relación Estructura-Actividad
12.
J Cell Biol ; 146(4): 723-30, 1999 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-10459008

RESUMEN

Protein targeting to the membrane of the ER is regulated by three GTPases, the 54-kD subunit of the signal recognition particle (SRP) and the alpha- and beta-subunit of the SRP receptor (SR). Here, we report on the GTPase cycle of the beta-subunits of the SR (SRbeta). We found that SRbeta binds GTP with high affinity and interacts with ribosomes in the GTP-bound state. Subsequently, the ribosome increases the GTPase activity of SRbeta and thus functions as a GTPase activating protein for SRbeta. Furthermore, the interaction between SRbeta and the ribosome leads to a reduction in the affinity of SRbeta for guanine nucleotides. We propose that SRbeta regulates the interaction of SR with the ribosome and thereby allows SRalpha to scan membrane-bound ribosomes for the presence of SRP. Interaction between SRP and SRalpha then leads to release of the signal sequence from SRP and insertion into the translocon. GTP hydrolysis then results in dissociation of SR from the ribosome, and SRP from the SR.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Péptidos/metabolismo , Ribosomas/metabolismo , Animales , Sitios de Unión , Perros , Retículo Endoplásmico Rugoso/metabolismo , Proteínas Activadoras de GTPasa , Guanosina Difosfato/metabolismo , Guanilil Imidodifosfato/metabolismo , Hidrólisis , Liposomas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Microsomas , Modelos Biológicos , Chaperonas Moleculares , Unión Proteica , Proteínas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Péptidos/genética , Canales de Translocación SEC , Eliminación de Secuencia , Transactivadores/metabolismo
13.
J Cell Biol ; 92(2): 579-83, 1982 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-7037796

RESUMEN

The vectorial translocation of nascent proteins through the membrane of the rough endoplasmic reticulum has been shown to require a specific membrane-bound protein whose cytoplasmic domain can be proteolytically cleaved and isolated as an active peptide of mol wt 60,000 (Meyer and Dobberstein, 1980, J. Cell Biol. 87:503-508). Rabbit antibodies raised against this peptide were used to further characterize the membrane-bound molecule. Immunoprecipitation of solubilized, radiolabeled rough microsomal proteins yielded a single polypeptide of mol wt 72,000, representing the membrane-bound protein from which the 60,000-mol wt peptide was proteolytically derived. The antibody could also be used to remove exclusively the 60,000-mol wt peptide, and thus the translocation activity, from elastase digests tested in a reconstituted system. Moreover, immunoprecipitation of elastase extracts alkylated with [14C] N-ethylmaleimide selected a single species of mol wt 60,000. Immunoprecipitation of in vivo radiolabeled proteins from the appropriate cell type yielded the 72,000-mol wt membrane protein irrespective of the duration of labeling, or if followed by a chase. Subsequent treatment with protease generated the 60,000-mol wt fragment. In addition, the antibody could be used to visualize reticular structures in intact cells which correspond to endoplasmic reticulum at the ultrastructural level. It is thus clear that one membrane component required in the vectorial translocation of nascent secretory (and membrane) proteins is a peptide of mol wt 72,000.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/fisiología , Proteínas/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Perros , Técnicas Inmunológicas , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/inmunología
14.
J Cell Biol ; 109(5): 2013-22, 1989 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-2808519

RESUMEN

We have investigated the structural requirements for the biogenesis of proteins spanning the membrane several times. Proteins containing various combinations of topological signals (signal anchor and stop transfer sequences) were synthesized in a cell-free translation system and their membrane topology was determined. Proteins spanning the membrane twice were obtained when a signal anchor sequence was followed by either a stop transfer sequence or a second signal anchor sequence. Thus, a signal anchor sequence in the second position can function as a stop transfer sequence, spanning the membrane in the opposite orientation to that of the first signal anchor sequence. A signal anchor sequence in the third position was able to insert amino acid sequences located COOH terminal to it. We conclude that proteins spanning the membrane several times can be generated by stringing together signal anchor and stop transfer sequences. However, not all proteins with three topological signals were found to span the membrane three times. A certain segment located between the first and second topological signal could prevent stable membrane integration of a third signal anchor segment.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/genética , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Membrana Celular/inmunología , Clonación Molecular , Glicosilación , Antígenos de Histocompatibilidad Clase I/biosíntesis , Humanos , Sustancias Macromoleculares , Plásmidos , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Transducción de Señal
15.
J Cell Biol ; 108(4): 1227-36, 1989 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-2784443

RESUMEN

Multilineage colony stimulating factor is a secretory protein with a cleavable signal sequence that is unusually long and hydrophobic. Using molecular cloning techniques we exchanged sequences NH2- or COOH-terminally flanking the hydrophobic signal sequence. Such modified fusion proteins still inserted into the membrane but their signal sequence was not cleaved. Instead the proteins were now anchored in the membrane by the formerly cleaved signal sequence (signal-anchor sequence). They exposed the NH2 terminus on the exoplasmic and the COOH terminus on the cytoplasmic side of the membrane. We conclude from our results that hydrophilic sequences flanking the hydrophobic core of a signal sequence can determine cleavage by signal peptidase and insertion into the membrane. It appears that negatively charged amino acid residues close to the NH2 terminal side of the hydrophobic segment are compatible with translocation of this segment across the membrane. A tripartite structure is proposed for signal-anchor sequences: a hydrophobic core region that mediates targeting to and insertion into the ER membrane and flanking hydrophilic segments that determine the orientation of the protein in the membrane.


Asunto(s)
Factores Estimulantes de Colonias/genética , Retículo Endoplásmico/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Clonación Molecular , ADN/genética , Membranas Intracelulares/metabolismo , Ratones , Datos de Secuencia Molecular , Plásmidos , Biosíntesis de Proteínas , Señales de Clasificación de Proteína/genética , ARN Mensajero/genética , Transcripción Genética
16.
J Cell Biol ; 111(5 Pt 1): 1793-802, 1990 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-1699948

RESUMEN

Signal recognition particle (SRP) plays the key role in targeting secretory proteins to the membrane of the endoplasmic reticulum (Walter, P., and V. R. Lingappa. 1986. Annu. Rev. Cell Biol. 2:499-516). It consists of SRP7S RNA and six proteins. The 54-kD protein of SRP (SRP54) recognizes the signal sequence of nascent polypeptides. The 19-kD protein of SRP (SRP19) binds to SRP7S RNA directly and is required for the binding of SRP54 to the particle. We used deletion mutants of SRP19 and SRP54 and an in vitro assembly assay in the presence of SRP7S RNA to define the regions in both proteins which are required to form a ribonucleoprotein particle. Deletion of the 21 COOH-terminal amino acids of SRP19 does not interfere with its binding to SRP7S RNA. Further deletions abolish SRP19 binding to SRP7S RNA. The COOH-terminal 207 amino acids of SRP54 (M domain) were found to be necessary and sufficient for binding to the SRP19/7S RNA complex in vitro. Limited protease digestion of purified SRP confirmed our results for SRP54 from the in vitro binding assay. The SRP54M domain could also bind to Escherichia coli 4.5S RNA that is homologous to part of SRP7S RNA. We suggest that the methionine-rich COOH terminus of SRP54 is a RNA binding domain and that SRP19 serves to establish a binding site for SRP54 on the SRP7S RNA.


Asunto(s)
Proteínas Portadoras/fisiología , Ribonucleoproteínas/fisiología , Animales , Sitios de Unión , Deleción Cromosómica , Mapeo Cromosómico , Perros , Endopeptidasas , Escherichia coli/genética , Sustancias Macromoleculares , Metionina , Páncreas/química , Fragmentos de Péptidos/metabolismo , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Partícula de Reconocimiento de Señal , Relación Estructura-Actividad
17.
J Cell Biol ; 113(1): 35-44, 1991 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-1848866

RESUMEN

Using a photocross-linking approach we have investigated the cytosolic and membrane components involved in the targeting and insertion of signal-anchor proteins into the membrane of the ER. The nascent chains of both type I and type II signal-anchor proteins can be cross-linked to the 54-kD subunit of the signal recognition particle. Upon addition of rough microsomes the type I and type II signal-anchor proteins interact with a number of components. Both types of protein interact with an integral membrane protein, the signal sequence receptor, previously identified by its proximity to preprolactin during its translocation (Wiedmann, M., T.V. Kurzchalia, E. Hartmann, and T.A. Rapoport. 1987. Nature [Lond.] 328:830-833). Three proteins, previously unidentified, were found to be cross-linked to the nascent chains of the signal-anchor proteins. Among them was a 37-kD protein that was found to be the main component interacting with the type I SA protein used. These proteins were not seen in the absence of membranes suggesting they are components of the ER. The ability of the nascent chains to be cross-linked to these identified proteins was shown to be abolished by prior treatment with agents known to disrupt translocation intermediates or ribosomes. We propose that the newly identified proteins function either in the membrane insertion of only a subset of proteins or only at a specific stage of insertion.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Señales de Clasificación de Proteína/fisiología , Ribonucleoproteínas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Transporte Biológico , Compartimento Celular , Reactivos de Enlaces Cruzados , Técnicas In Vitro , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Peso Molecular , Precursores de Proteínas/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes/metabolismo , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal , Tripsina/farmacología
18.
J Cell Biol ; 121(5): 977-85, 1993 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8388879

RESUMEN

Signal recognition particle (SRP), the cytoplasmic ribonucleoprotein particle that mediates the targeting of proteins to the ER, consists of a 7S RNA and six different proteins. The 68- (SRP68) and 72- (SRP72) kD proteins of SRP are bound to the 7S RNA of SRP as a heterodimeric complex (SRP68/72). Here we describe the primary structure of SRP72 and the assembly of SRP68, SRP72 and 7S RNA into a ribonucleoprotein particle. The amino acid sequence deduced from the cDNA of SRP72 reveals a basic protein of 671 amino acids which shares no sequence similarity with any protein in the sequence data libraries. Assembly of SRP72 into a ribonucleoprotein particle required the presence of 7S RNA and SRP68. In contrast, SRP68 alone specifically bound to 7S RNA. SRP68 contacts the 7S RNA via its NH2-terminal half while COOH-terminal portions of SRP68 and SRP72 are in contact with each other in SRP. SRP68 thus serves as a link between 7S RNA and SRP72. As a large NH2-terminal domain of SRP72 is exposed on SRP it may be a site of contact to other molecules involved in the SRP cycle between the ribosome and the ER membrane.


Asunto(s)
ARN Nuclear Pequeño/ultraestructura , Ribonucleoproteínas/ultraestructura , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Clonación Molecular , ADN/genética , Perros , Sustancias Macromoleculares , Ratones , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Señales de Clasificación de Proteína/metabolismo , Mapeo Restrictivo , Partícula de Reconocimiento de Señal , Relación Estructura-Actividad
19.
J Cell Biol ; 121(4): 743-50, 1993 May.
Artículo en Inglés | MEDLINE | ID: mdl-8491769

RESUMEN

We have identified membrane components which are adjacent to type I and type II signal-anchor proteins during their insertion into the membrane of the ER. Using two different cross-linking approaches a 37-38-kD nonglycosylated protein, previously identified as P37 (High, S., D. Görlich, M. Wiedmann, T. A. Rapoport, and B. Dobberstein. 1991. J. Cell Biol. 113:35-44), was found adjacent to all the membrane inserted nascent chains used in this study. On the basis of immunoprecipitation, this ER protein was shown to be identical to the recently identified mammalian Sec61 protein. Thus, Sec61p is the principal cross-linking partner of both type I and type II signal-anchor proteins during their membrane insertion (this work), and of secretory proteins during their translocation (Görlich, D., S. Prehn, E. Hartmann, K.-U. Kalies, and T. A. Rapoport. 1992. Cell. 71:489-503). We propose that membrane proteins of both orientations, and secretory proteins employ the same ER translocation sites, and that Sec61p is a core component of these sites.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Proteínas de la Membrana/metabolismo , Secuencia de Bases , Transporte Biológico , ADN , Membranas Intracelulares/metabolismo , Datos de Secuencia Molecular , Pruebas de Precipitina , Canales de Translocación SEC
20.
J Cell Biol ; 111(6 Pt 1): 2283-94, 1990 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-2177473

RESUMEN

Bifunctional cross-linking reagents were used to probe the protein environment in the ER membrane of the signal sequence receptor (SSR), a 24-kD integral membrane glycoprotein (Wiedmann, M., T. V. Kurzchalia, E. Hartmann, and T. A. Rapoport. 1987. Nature [Lond.]. 328:830-833). The proximity of several polypeptides was demonstrated. A 22-kD glycoprotein was identified tightly bound to the 34-kD SSR even after membrane solubilization. The 34-kD polypeptide, now termed alpha SSR, and the 22-kD polypeptide, the beta SSR, represent a heterodimer. We report on the sequence of the beta SSR, its membrane topology, and on the mechanism of its integration into the membrane. Cross-linking also produced dimers of the alpha-subunit of the SSR indicating that oligomers of the SSR exist in the ER membrane. Various bifunctional cross-linking reagents were used to study the relation to ER membrane proteins of nascent chains of preprolactin and beta-lactamase at different stages of their translocation through the membrane. The predominant cross-linked products obtained in high yields contained the alpha SSR, indicating in conjunction with previous results that it is a major membrane protein in the neighborhood of translocating nascent chains of secretory proteins. The results support the existence of a translocon, a translocation complex involving the SSR, which constitutes the specific site of protein translocation across the ER membrane.


Asunto(s)
Proteínas de Unión al Calcio , Reactivos de Enlaces Cruzados/farmacología , Retículo Endoplásmico/metabolismo , Glicoproteínas de Membrana/genética , Microsomas/metabolismo , Receptores de Superficie Celular/genética , Receptores Citoplasmáticos y Nucleares , Receptores de Péptidos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cromatografía de Afinidad , Clonación Molecular , ADN/genética , Perros , Membranas Intracelulares/metabolismo , Sustancias Macromoleculares , Glicoproteínas de Membrana/aislamiento & purificación , Glicoproteínas de Membrana/metabolismo , Modelos Estructurales , Datos de Secuencia Molecular , Peso Molecular , Fragmentos de Péptidos/aislamiento & purificación , Plásmidos , Biosíntesis de Proteínas , Conformación Proteica , Procesamiento Proteico-Postraduccional , ARN Mensajero/genética , Receptores de Superficie Celular/aislamiento & purificación , Receptores de Superficie Celular/metabolismo , Transcripción Genética , beta-Lactamasas/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda