RESUMEN
This study aimed to determine if phantom-based methodologies for optimization of hepatic lesion detection with computed tomography (CT) require randomization of lesion placement and inclusion of normal images. A phantom containing fixed opacities of varying size (diameters, 2.4, 4.8, and 9.5 mm) was scanned at various exposure and slice thickness settings. Two image sets were compared: All images in the first image set contained opacities with known location; the second image set contained images with opacities in random locations. Following Institutional Review Board approval, nine experienced observers scored opacity visualization using a 4-point confidence scale. Comparisons between image sets were performed using Spearman, Kappa, and Wilcoxon techniques. Observer scores demonstrated strong correlation between both approaches when all opacity sizes were combined (r = 0.92, p < 0.0001), for the 9.5 mm opacity (r = 0.96, p < 0.0001) and for the 2.4 mm opacity (r = 0.64, p < 0.05). There was no significant correlation for the 4.8 mm opacity. A significantly higher sensitivity score for the known compared with the unknown location was found for the 9.5 mm opacity and 4.8 mm opacity for a single slice thickness and exposure condition (p < 0.05). Phantom-based optimization of CT hepatic examinations requires randomized lesion location when investigating challenging conditions; however, a standard phantom with fixed lesion location is suitable for the optimization of routine liver protocols. The development of more sophisticated phantoms or methods than those currently available is indicated for the optimization of CT protocols for diagnostic tasks involving the detection of subtle change.
Asunto(s)
Hígado/diagnóstico por imagen , Fantasmas de Imagen/normas , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Estudios de Evaluación como Asunto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Hígado/patología , Masculino , Variaciones Dependientes del Observador , Dosis de Radiación , Valores de Referencia , Medición de Riesgo , Sensibilidad y EspecificidadRESUMEN
BACKGROUND: Optimising first time success of peripheral intravenous catheter (PIVC) insertion and reducing intravenous (IV) complications in cancer patients undergoing contrast-enhanced computed tomography (CT) is vital to ensure vascular access preservation and diagnostic accuracy. The aim of this study was to test the feasibility of a randomised controlled trial (RCT) evaluating a novel perforated PIVC compared to a standard PIVC. METHODS: A single centre, parallel-group, pilot RCT was conducted between March and May 2020. Adult participants diagnosed with cancer were randomised to a non-perforated PIVC (standard care) or a PIVC with a novel perforated design (intervention) for the administration of IV contrast. There were two primary outcomes: (1) feasibility of an adequately powered RCT with pre-established criteria; and (2) all-cause PIVC failure. Secondary outcomes included: first insertion success, modes of PIVC failure, dwell time, contrast injection parameters (volume and injection rate), contrast enhancement, radiographer satisfaction and adverse events. RESULTS: Feasibility outcomes were met, except for eligibility (⩾90%) and recruitment (⩾90%). In total, 166 participants were screened, 128 (77%) were eligible and of these 101/128 (79%) were randomised; 50 to standard care and 51 to intervention. First time insertion rate was 94% (47/50) in standard care and 90% (46/50) in intervention. The median dwell time was 37 minutes (interquartile range (IQR): 25-55) in standard care and 35 minutes (IQR: 25-60) in the intervention group. There was one PIVC failure, a contrast media extravasation, in the intervention group (1/51; 2%). The desired contrast injection rate was not achieved in 4/101 (4%) of participants; two from each group. Radiographers were satisfied with the contrast flow rate. CONCLUSIONS: This pilot RCT suggests perforated PIVCs provide expected flow rate, with no evidence of differences in contrast enhancement to non-perforated PIVCs. The feasibility of conducting a larger powered RCT was demonstrated.