Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Brain Behav Immun ; 109: 292-307, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36775074

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a major, incurable respiratory condition that is primarily caused by cigarette smoking (CS). Neurocognitive disorders including cognitive dysfunction, anxiety and depression are highly prevalent in people with COPD. It is understood that increased lung inflammation and oxidative stress from CS exposure may 'spill over' into the systemic circulation to promote the onset of these extra-pulmonary comorbidities, and thus impacts the quality of life of people with COPD. The precise role of the 'spill-over' of inflammation and oxidative stress in the onset of COPD-related neurocognitive disorders are unclear. The present study investigated the impact of chronic CS exposure on anxiety-like behaviors and social recognition memory, with a particular focus on the role of the 'spill-over' of inflammation and oxidative stress from the lungs. Adult male BALB/c mice were exposed to either room air (sham) or CS (9 cigarettes per day, 5 days a week) for 24 weeks and were either daily co-administered with the NOX2 inhibitor, apocynin (5 mg/kg, in 0.01 % DMSO diluted in saline, i.p.) or vehicle (0.01 % DMSO in saline) one hour before the initial CS exposure of the day. After 23 weeks, mice underwent behavioral testing and physiological diurnal rhythms were assessed by monitoring diurnal regulation profiles. Lungs were collected and assessed for hallmark features of COPD. Consistent with its anti-inflammatory and oxidative stress properties, apocynin treatment partially lessened lung inflammation and lung function decline in CS mice. CS-exposed mice displayed marked anxiety-like behavior and impairments in social recognition memory compared to sham mice, which was prevented by apocynin treatment. Apocynin was unable to restore the decreased Bmal1-positive cells, key in cells in diurnal regulation, in the suprachiasmatic nucleus of the hypothalamus to that of sham levels. CS-exposed mice treated with apocynin was associated with a restoration of microglial area per cell and basal serum corticosterone. This data suggests that we were able to model the CS-induced social recognition memory impairments seen in humans with COPD. The preventative effects of apocynin on memory impairments may be via a microglial dependent mechanism.


Asunto(s)
Fumar Cigarrillos , Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Adulto , Masculino , Ratones , Animales , Fumar Cigarrillos/efectos adversos , Microglía , Dimetilsulfóxido/farmacología , Calidad de Vida , Pulmón , Neumonía/complicaciones , Núcleo Supraquiasmático , Hipotálamo , Inflamación/complicaciones , Ratones Endogámicos C57BL
2.
J Neuroinflammation ; 19(1): 72, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351173

RESUMEN

BACKGROUND: Cigarette smoking (CS) is the leading cause of chronic obstructive pulmonary disease (COPD). The "spill-over" of pulmonary inflammation into the systemic circulation may damage the brain, leading to cognitive dysfunction. Cessation of CS can improve pulmonary and neurocognitive outcomes, however, its benefit on the neuroinflammatory profile remains uncertain. Here, we investigate how CS exposure impairs neurocognition and whether this can be reversed with CS cessation or an antioxidant treatment. METHODS: Male BALB/c mice were exposed to CS (9 cigarettes/day for 8 weeks) followed by 4 weeks of CS cessation. Another cohort of CS-exposed mice were co-administrated with a glutathione peroxidase mimetic, ebselen (10 mg/kg) or vehicle (5% CM-cellulose). We assessed pulmonary inflammation, spatial and working memory, and the hippocampal microglial, oxidative and synaptic profiles. RESULTS: CS exposure increased lung inflammation which was reduced following CS cessation. CS caused spatial and working memory impairments which were attributed to hippocampal microglial activation and suppression of synaptophysin. CS cessation did not improve memory deficits or alter microglial activation. Ebselen completely prevented the CS-induced working and spatial memory impairments, which was associated with restored synaptophysin expression without altering microglial activation. CONCLUSION: We were able to model the CS-induced memory impairment and microglial activation seen in human COPD. The preventative effects of ebselen on memory impairment is likely to be dependent on a preserved synaptogenic profile. Cessation alone also appears to be insufficient in correcting the memory impairment, suggesting the importance of incorporating antioxidant therapy to help maximising the benefit of cessation.


Asunto(s)
Fumar Cigarrillos , Disfunción Cognitiva , Animales , Fumar Cigarrillos/efectos adversos , Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control , Hipocampo , Humanos , Isoindoles , Pulmón , Masculino , Ratones , Ratones Endogámicos BALB C , Compuestos de Organoselenio , Sinaptofisina
3.
Clin Sci (Lond) ; 136(8): 537-555, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35343564

RESUMEN

People with chronic obstructive pulmonary disease (COPD) are susceptible to respiratory infections which exacerbate pulmonary and/or cardiovascular complications, increasing their likelihood of death. The mechanisms driving these complications remain unknown but increased oxidative stress has been implicated. Here we investigated whether influenza A virus (IAV) infection, following chronic cigarette smoke (CS) exposure, worsens vascular function and if so, whether the antioxidant ebselen alleviates this vascular dysfunction. Male BALB/c mice were exposed to either room air or CS for 8 weeks followed by inoculation with IAV (Mem71, 1 × 104.5 pfu). Mice were treated with ebselen (10 mg/kg) or vehicle (5% w/v CM-cellulose in water) daily. Mice were culled 3- and 10-days post-infection, and their lungs lavaged to assess inflammation. The thoracic aorta was excised to investigate endothelial and smooth muscle dilator responses, expression of key vasodilatory and oxidative stress modulators, infiltrating immune cells and vascular remodelling. CS increased lung inflammation and caused significant vascular endothelial dysfunction, which was worsened by IAV infection. CS-driven increases in vascular oxidative stress, aortic wall remodelling and suppression of endothelial nitric oxide synthase (eNOS) were not affected by IAV infection. CS and IAV infection significantly enhanced T cell recruitment into the aortic wall. Ebselen abolished the exaggerated lung inflammation, vascular dysfunction and increased T cell infiltration in CS and IAV-infected mice. Our findings showed that ebselen treatment abolished vascular dysfunction in IAV-induced exacerbations of CS-induced lung inflammation indicating it may have potential for the treatment of cardiovascular comorbidities seen in acute exacerbations of COPD (AECOPD).


Asunto(s)
Fumar Cigarrillos , Virus de la Influenza A , Gripe Humana , Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Animales , Azoles/farmacología , Fumar Cigarrillos/efectos adversos , Humanos , Gripe Humana/complicaciones , Isoindoles , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Compuestos de Organoselenio , Neumonía/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Nicotiana/efectos adversos
4.
Am J Respir Cell Mol Biol ; 62(2): 217-230, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31461300

RESUMEN

Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease negatively impacts quality of life and survival. Cigarette smoking (CS) is the major risk factor for chronic obstructive pulmonary disease and skeletal muscle dysfunction; however, how CS affects skeletal muscle function remains enigmatic. To examine the impact of CS on skeletal muscle inflammation and regeneration, male BALB/c mice were exposed to CS for 8 weeks before muscle injury was induced by barium chloride injection, and were maintained on the CS protocol for up to 21 days after injury. Barium chloride injection resulted in architectural damage to the tibialis anterior muscle, resulting in a decrease contractile function, which was worsened by CS exposure. CS exposure caused muscle atrophy (reduction in gross weight and myofiber cross-sectional area) and altered fiber type composition (31% reduction of oxidative fibers). Both contractile function and loss in myofiber cross-sectional area by CS exposure gradually recovered over time. Satellite cells are muscle stem cells that confer skeletal muscle the plasticity to adapt to changing demands. CS exposure blunted Pax7+ centralized nuclei within satellite cells and thus prevented the activation of these muscle stem cells. Finally, CS triggered muscle inflammation; in particular, there was an exacerbated recruitment of F4/80+ monocytic cells to the site of injury along with enhanced proinflammatory cytokine expression. In conclusion, CS exposure amplified the local inflammatory response at the site of skeletal muscle injury, and this was associated with impaired satellite cell activation, leading to a worsened muscle injury and contractile function without detectable impacts on the recovery outcomes.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Regeneración/fisiología , Animales , Masculino , Ratones Endogámicos BALB C , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/metabolismo , Enfermedades Musculares/metabolismo , Factor de Transcripción PAX7/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Calidad de Vida , Fumar/fisiopatología
5.
Clin Sci (Lond) ; 134(22): 2943-2957, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33125061

RESUMEN

Gastrointestinal (GI) dysfunction is a common comorbidity of chronic obstructive pulmonary disease (COPD) for which a major cause is cigarette smoking (CS). The underlying mechanisms and precise effects of CS on gut contractility, however, are not fully characterised. Therefore, the aim of the present study was to investigate whether CS impacts GI function and structure in a mouse model of CS-induced COPD. We also aimed to investigate GI function in the presence of ebselen, an antioxidant that has shown beneficial effects on lung inflammation resulting from CS exposure. Mice were exposed to CS for 2 or 6 months. GI structure was analysed by histology and immunofluorescence. After 2 months of CS exposure, ex vivo gut motility was analysed using video-imaging techniques to examine changes in colonic migrating motor complexes (CMMCs). CS decreased colon length in mice. Mice exposed to CS for 2 months had a higher frequency of CMMCs and a reduced resting colonic diameter but no change in enteric neuron numbers. Ten days cessation after 2 months CS reversed CMMC frequency changes but not the reduced colonic diameter phenotype. Ebselen treatment reversed the CS-induced reduction in colonic diameter. After 6 months CS, the number of myenteric nitric-oxide producing neurons was significantly reduced. This is the first evidence of colonic dysmotility in a mouse model of CS-induced COPD. Dysmotility after 2 months CS is not due to altered neuron numbers; however, prolonged CS-exposure significantly reduced enteric neuron numbers in mice. Further research is needed to assess potential therapeutic applications of ebselen in GI dysfunction in COPD.


Asunto(s)
Azoles/farmacología , Fumar Cigarrillos/efectos adversos , Tracto Gastrointestinal/fisiopatología , Compuestos de Organoselenio/farmacología , Animales , Recuento de Células , Forma de la Célula/efectos de los fármacos , Colon/efectos de los fármacos , Colon/patología , Colon/fisiopatología , Sistema Nervioso Entérico/efectos de los fármacos , Motilidad Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/patología , Isoindoles , Macrófagos/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Moco/efectos de los fármacos , Moco/metabolismo , Plexo Mientérico/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo
6.
JHEP Rep ; 6(5): 101023, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38681862

RESUMEN

Background & Aims: Liver sinusoidal endothelial cells (LSECs) are important in liver development, regeneration, and pathophysiology, but the differentiation process underlying their tissue-specific phenotype is poorly understood and difficult to study because primary human cells are scarce. The aim of this study was to use human induced pluripotent stem cell (hiPSC)-derived LSEC-like cells to investigate the differentiation process of LSECs. Methods: hiPSC-derived endothelial cells (iECs) were transplanted into the livers of Fah-/-/Rag2-/-/Il2rg-/- mice and assessed over a 12-week period. Lineage tracing, immunofluorescence, flow cytometry, plasma human factor VIII measurement, and bulk and single cell transcriptomic analysis were used to assess the molecular and functional changes that occurred following transplantation. Results: Progressive and long-term repopulation of the liver vasculature occurred as iECs expanded along the sinusoids between hepatocytes and increasingly produced human factor VIII, indicating differentiation into LSEC-like cells. To chart the developmental profile associated with LSEC specification, the bulk transcriptomes of transplanted cells between 1 and 12 weeks after transplantation were compared against primary human adult LSECs. This demonstrated a chronological increase in LSEC markers, LSEC differentiation pathways, and zonation. Bulk transcriptome analysis suggested that the transcription factors NOTCH1, GATA4, and FOS have a central role in LSEC specification, interacting with a network of 27 transcription factors. Novel markers associated with this process included EMCN and CLEC14A. Additionally, single cell transcriptomic analysis demonstrated that transplanted iECs at 4 weeks contained zonal subpopulations with a region-specific phenotype. Conclusions: Collectively, this study confirms that hiPSCs can adopt LSEC-like features and provides insight into LSEC specification. This humanised xenograft system can be applied to further interrogate LSEC developmental biology and pathophysiology, bypassing current logistical obstacles associated with primary human LSECs. Impact and implications: Liver sinusoidal endothelial cells (LSECs) are important cells for liver biology, but better model systems are required to study them. We present a pluripotent stem cell xenografting model that produces human LSEC-like cells. A detailed and longitudinal transcriptomic analysis of the development of LSEC-like cells is included, which will guide future studies to interrogate LSEC biology and produce LSEC-like cells that could be used for regenerative medicine.

7.
Br J Pharmacol ; 180(15): 2018-2034, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36908040

RESUMEN

BACKGROUND AND PURPOSE: Cardiovascular disease affects up to half of the patients with chronic obstructive pulmonary disease (COPD), exerting deleterious impact on health outcomes and survivability. Vascular endothelial dysfunction marks the onset of cardiovascular disease. The present study examined the effect of a potent NADPH Oxidase (NOX) inhibitor and free-radical scavenger, apocynin, on COPD-related cardiovascular disease. EXPERIMENTAL APPROACH: Male BALB/c mice were exposed to either room air (Sham) or cigarette smoke (CS) generated from 9 cigarettes·day-1 , 5 days a week for up to 24 weeks with or without apocynin treatment (5 mg·kg-1 ·day-1 , intraperitoneal injection). KEY RESULTS: Eight-weeks of apocynin treatment reduced airway neutrophil infiltration (by 42%) and completely preserved endothelial function and endothelial nitric oxide synthase (eNOS) availability against the oxidative insults of cigarette smoke exposure. These preservative effects were maintained up until the 24-week time point. 24-week of apocynin treatment markedly reduced airway inflammation (reduced infiltration of macrophage, neutrophil and lymphocyte), lung function decline (hyperinflation) and prevented airway collagen deposition by cigarette smoke exposure. CONCLUSION AND IMPLICATIONS: Limiting NOX activity may slow COPD progression and lower cardiovascular disease risk, particularly when signs of oxidative stress become evident.


Asunto(s)
Enfermedades Cardiovasculares , Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Lesiones del Sistema Vascular , Ratones , Animales , Masculino , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Estrés Oxidativo , Pulmón
8.
Front Pharmacol ; 13: 859146, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370652

RESUMEN

Limb muscle dysfunction is a hallmark of Chronic Obstructive Pulmonary Disease (COPD) which is further worsened following a viral-induced acute exacerbation of COPD (AECOPD). An amplified airway inflammation underlies the aggravated respiratory symptoms seen during AECOPD, however, its contributory role to limb muscle dysfunction is unclear. The present study examined the impact of influenza A virus (IAV)-induced exacerbation on hind limb muscle parameters. Airway inflammation was established in male BALB/c mice by exposure to cigarette smoke (CS) for 8 weeks. Exacerbation was then induced via inoculation with IAV, and various lung and muscle parameters were assessed on day 3 (peak of airway inflammation) and day 10 (resolution phase) post-infection. IAV infection exacerbated CS-induced airway inflammation as evidenced by further increases in immune cell counts within bronchoalveolar lavage fluid. Despite no significant impact on muscle mass, IAV exacerbation worsened the force-generating capacity of the tibialis anterior (TA) muscle. Protein oxidation and myogenic disruption was observed in the TA following CS exposure, however, IAV exacerbation did not augment these detrimental processes. To further explore the contributory role of airway inflammation on myogenic signaling, cultured myotubes were exposed to conditioned medium (CM) derived from bronchial epithelial cells stimulated with polyinosinic:polycytidylic acid and cigarette smoke extract (CSE). Despite an amplified inflammatory response in the lung epithelial cells, the CM derived from these cells did not potentiate myogenic disruption in the C2C12 myotubes. In conclusion, our data suggest that certain parameters of limb muscle dysfunction seen during viral-induced AECOPD may be independent of airway inflammation.

9.
Pharmacol Ther ; 233: 108017, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34626675

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a major incurable global health burden and currently the 3rd largest cause of death in the world, with approximately 3.23 million deaths per year. Globally, the financial burden of COPD is approximately €82 billion per year and causes substantial morbidity and mortality. Importantly, much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities and viral and bacterial-induced acute exacerbations (AECOPD). Recent clinical studies have shown that cognitive dysfunction is present in up to 60% of people with COPD, with impairments in executive function, memory, and attention, impacting on important outcomes such as quality of life, hospitalisation and survival. The high prevalence of cognitive dysfunction in COPD may also help explain the insufficient adherence to therapeutic plans and strategies, thus worsening disease progression in people with COPD. However, the mechanisms underlying the impaired neuropathology and cognition in COPD remain largely unknown. In this review, we propose that the observed pulmonary oxidative burden and inflammatory response of people with COPD 'spills over' into the systemic circulation, resulting in damage to the brain and leading to cognitive dysfunction. As such, drugs targeting the lungs and comorbidities concurrently represent an exciting and unique therapeutic opportunity to treat COPD and cognitive impairments, which may lead to the production of novel targets to prevent and reverse the debilitating and life-threatening effects of cognitive dysfunction in COPD.


Asunto(s)
Disfunción Cognitiva , Enfermedad Pulmonar Obstructiva Crónica , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Progresión de la Enfermedad , Humanos , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Calidad de Vida
10.
Front Mol Neurosci ; 15: 893083, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35656006

RESUMEN

Background and Objective: Neurocognitive dysfunction is present in up to ∼61% of people with chronic obstructive pulmonary disease (COPD), with symptoms including learning and memory deficiencies, negatively impacting the quality of life of these individuals. As the mechanisms responsible for neurocognitive deficits in COPD remain unknown, we explored whether chronic cigarette smoke (CS) exposure causes neurocognitive dysfunction in mice and whether this is associated with neuroinflammation and an altered neuropathology. Methods: Male BALB/c mice were exposed to room air (sham) or CS (9 cigarettes/day, 5 days/week) for 24 weeks. After 23 weeks, mice underwent neurocognitive tests to assess working and spatial memory retention. At 24 weeks, mice were culled and lungs were collected and assessed for hallmark features of COPD. Serum was assessed for systemic inflammation and the hippocampus was collected for neuroinflammatory and structural analysis. Results: Chronic CS exposure impaired lung function as well as driving pulmonary inflammation, emphysema, and systemic inflammation. CS exposure impaired working memory retention, which was associated with a suppression in hippocampal microglial number, however, these microglia displayed a more activated morphology. CS-exposed mice showed changes in astrocyte density as well as a reduction in synaptophysin and dendritic spines in the hippocampus. Conclusion: We have developed an experimental model of COPD in mice that recapitulates the hallmark features of the human disease. The altered microglial/astrocytic profiles and alterations in the neuropathology within the hippocampus may explain the neurocognitive dysfunction observed during COPD.

11.
Br J Pharmacol ; 178(8): 1805-1818, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33523477

RESUMEN

BACKGROUND AND PURPOSE: It is well established that both smokers and patients with COPD are at a significantly heightened risk of cardiovascular disease (CVD), although the mechanisms underpinning the onset and progression of co-morbid CVD are largely unknown. Here, we explored whether cigarette smoke (CS) exposure impairs vascular function in mice and given the well-known pathological role for oxidative stress in COPD, whether the antioxidant compound ebselen prevents CS-induced vascular dysfunction in mice. EXPERIMENTAL APPROACH: Male BALB/c mice were exposed to either room air (sham) or CS generated from nine cigarettes per day, 5 days a week for 8 weeks. Mice were treated with ebselen (10 mg·kg-1 , oral gavage once daily) or vehicle (5% w/v CM cellulose in water) 1 h prior to the first CS exposure of the day. Upon killing, bronchoalveolar lavage fluid (BALF) was collected to assess pulmonary inflammation, and the thoracic aorta was excised to investigate vascular endothelial and smooth muscle dilator responses ex vivo. KEY RESULTS: CS exposure caused a significant increase in lung inflammation which was reduced by ebselen. CS also caused significant endothelial dysfunction in the thoracic aorta which was attributed to a down-regulation of eNOS expression and increased vascular oxidative stress. Ebselen abolished the aortic endothelial dysfunction seen in CS-exposed mice by reducing the oxidative burden and preserving eNOS expression. CONCLUSION AND IMPLICATIONS: Targeting CS-induced oxidative stress with ebselen may provide a novel means for treating the life-threatening pulmonary and cardiovascular manifestations associated with cigarette smoking and COPD.


Asunto(s)
Compuestos de Organoselenio , Enfermedad Pulmonar Obstructiva Crónica , Animales , Azoles , Líquido del Lavado Bronquioalveolar , Humanos , Isoindoles , Pulmón , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Compuestos de Organoselenio/farmacología , Humo/efectos adversos , Fumar
12.
Br J Pharmacol ; 178(15): 3049-3066, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33817783

RESUMEN

BACKGROUND AND PURPOSE: Skeletal muscle dysfunction is a major comorbidity of chronic obstructive pulmonary disease (COPD). This type of muscle dysfunction may be a direct consequence of oxidative insults evoked by cigarette smoke (CS) exposure. The present study examined the effects of a potent Nox inhibitor and reactive oxygen species (ROS) scavenger, apocynin, on CS-induced muscle dysfunction. EXPERIMENTAL APPROACH: Male BALB/c mice were exposed to either room air (sham) or CS generated from nine cigarettes per day, 5 days a week for 8 weeks, with or without the coadministration of apocynin (5 mg·kg-1 , i.p.). C2C12 myotubes exposed to either hydrogen peroxide (H2 O2 ) or water-soluble cigarette smoke extract (CSE) with or without apocynin (500 nM) were used as an experimental model in vitro. KEY RESULTS: Eight weeks of CS exposure caused muscle dysfunction in mice, reflected by 10% loss of muscle mass and 54% loss of strength of tibialis anterior which were prevented by apocynin administration. In C2C12 myotubes, direct exposure to H2 O2 or CSE caused myofibre wasting, accompanied by ~50% loss of muscle-derived insulin-like growth factor (IGF)-1 and two-fold induction of Cybb, independent of cellular inflammation. Expression of myostatin and MAFbx, negative regulators of muscle mass, were up-regulated under H2 O2 but not CSE conditions. Apocynin treatment abolished CSE-induced Cybb expression, preserving muscle-derived IGF-1 expression and signalling pathway downstream of mammalian target of rapamycin (mTOR), thereby preventing myofibre wasting. CONCLUSION AND IMPLICATIONS: Targeted pharmacological inhibition of Nox-derived ROS may alleviate the lung and systemic manifestations in smokers with COPD.


Asunto(s)
Fumar Cigarrillos , Acetofenonas , Animales , Fumar Cigarrillos/efectos adversos , Masculino , Ratones , Ratones Endogámicos BALB C , Músculo Esquelético , Humo/efectos adversos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda