RESUMEN
Measurements of the electronic conductivity of lithium ion coatings are an important part of electrode development, particularly for thicker electrodes and in high power applications. A resistance measurement system with 46 probes has been used to characterise lithium ion electrodes, with different formulations and coat weights. The results show that the total through plane resistance is dominated by the interface resistance between the coating and the metal foil, rather than the volumetric resistivity of the coating. For coatings containing carbon nano-tubes, the in plane resistivities in the coating and perpendicular directions are different. A finite volume model was developed to help analyse and interpret the resistivity data.
RESUMEN
Unusual features in the Hall Resistivity of thin film systems are frequently associated with whirling spin textures such as Skyrmions. A host of recent investigations of Hall Hysteresis loops in SrRuO3 heterostructures have provided conflicting evidence for different causes for such features. We have constructed an SrRuO3-PbTiO3 (Ferromagnetic - Ferroelectric) bilayer that exhibits features in the Hall Hysteresis previously attributed to a Topological Hall Effect, and Skyrmions. Here we show field dependent Magnetic Force Microscopy measurements throughout the key fields where the 'THE' presents, revealing the emergence to two periodic, chiral spin textures. The zero-field cycloidal phase, which then transforms into a 'double-q' incommensurate spin crystal appears over the appearance of the 'Topological-like' Hall effect region, and develop into a ferromagnetic switching regime as the sample reaches saturation, and the 'Topological-like' response diminishes. Scanning Tunnelling Electron Microscopy and Density Functional Theory is used to observe and analyse surface inversion symmetry breaking and confirm the role of an interfacial Dzyaloshinskii-Moriya interaction at the heart of the system.