Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Nanobiotechnology ; 19(1): 167, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34082783

RESUMEN

Liposomes are widely used as drug delivery carriers and as cell model systems. Here, we measure the dielectric properties of individual liposomes adsorbed on a metal electrode by in-liquid scanning dielectric microscopy in force detection mode. From the measurements the lamellarity of the liposomes, the separation between the lamellae and the specific capacitance of the lipid bilayer can be obtained. As application we considered the case of non-extruded DOPC liposomes with radii in the range ~ 100-800 nm. Uni-, bi- and tri-lamellar liposomes have been identified, with the largest population corresponding to bi-lamellar liposomes. The interlamellar separation in the bi-lamellar liposomes is found to be below ~ 10 nm in most instances. The specific capacitance of the DOPC lipid bilayer is found to be ~ 0.75 µF/cm2 in excellent agreement with the value determined on solid supported planar lipid bilayers. The lamellarity of the DOPC liposomes shows the usual correlation with the liposome's size. No correlation is found, instead, with the shape of the adsorbed liposomes. The proposed approach offers a powerful label-free and non-invasive method to determine the lamellarity and dielectric properties of single liposomes.


Asunto(s)
Portadores de Fármacos , Liposomas/química , Microscopía , Sistemas de Liberación de Medicamentos , Membrana Dobles de Lípidos , Nanotecnología/métodos
2.
Pharm Res ; 34(5): 1093-1103, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28197757

RESUMEN

PURPOSE: Gold nanoparticles have been proved useful for many biomedical applications, specifically, for their use as advanced imaging systems. However, they usually present problems related with stability and toxicity. METHODS: In the present work, gold-nanoparticles have been encapsulated in polymeric nanoparticles using a novel methodology based on nano-emulsion templating. Firstly, gold nanoparticles have been transferred from water to ethyl acetate, a solvent classified as class III by the NIH guidelines (low toxic potential). Next, the formation of nano-emulsions loaded with gold nanoparticles has been performed using a low-energy, the phase inversion composition (PIC) emulsification method, followed by solvent evaporation giving rise to polymeric nanoparticles. RESULTS: Using this methodology, high concentrations of gold nanoparticles (>100 pM) have been encapsulated. Increasing gold nanoparticle concentration, nano-emulsion and nanoparticle sizes increase, resulting in a decrease on the stability. It is noteworthy that the designed nanoparticles did not produce cytotoxicity neither hemolysis at the required concentration. CONCLUSIONS: Therefore, it can be concluded that a novel and very versatile methodology has been developed for the production of polymeric nanoparticles loaded with gold nanoparticles. Graphical Abstract Schematic representation of AuNP-loaded polymeric nanoparticles preparation from nano-emulsion templating.


Asunto(s)
Emulsiones/química , Oro/química , Ácido Láctico/química , Nanopartículas del Metal/química , Ácido Poliglicólico/química , Acetatos/química , Línea Celular Tumoral , Portadores de Fármacos/química , Células HeLa , Humanos , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Polímeros/química , Solventes/química , Agua/química
3.
ACS Appl Polym Mater ; 6(15): 8842-8855, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39144279

RESUMEN

The use of transdermal delivery for nucleic acid administration is an interesting approach to overcoming limitations of systemic administration routes, such as first-pass effects, the painful needle injection, or their poor biodistribution. Thus, the use of a microneedle-based patch could represent a turning point for nucleic acid delivery, thanks to the possibility of self-administration of the actives in a painless and easy procedure. However, the design of transdermal systems with a higher degree of precision release is a clear need that has not been fully resolved. Committed to tackling this challenge, we present here a microneedle patch that involves a smart delivery system supported by the well-established ability of boronic acid to interact with carbohydrates in a pH-dependent manner. This system builds up a multilayer structure over a solid microneedle platform whose surface has been modified to immobilize glucosamine units that are able to interact with an oligopeptide-end terminated poly(ß-aminoester) that presents a 4-carboxy-3-fluorophenylboronic acid (Bor-pBAE). Thus, sequential layers of the Bor-pBAE and plasmid DNA have been assembled, thanks to the ability of the polymer to interact with the nucleic acid at a basic pH and then gradually release the plasmid under two different conditions of pH (the physiological pH = 7.4 and the acidic pH = 5.1). We set up the design and implementation of this first proof of concept while demonstrating microneedles' safety and functionality. Additionally, we have shown the efficacy of the construct to express the encoded genes in model cell lines. In conclusion, we have established the basis to confirm that this generation of borylated poly(ß-aminoesters) holds great promise as a transdermal local nucleic acid delivery system.

4.
Nanoscale Adv ; 5(6): 1611-1623, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36926558

RESUMEN

Oligopeptide end-modified poly(ß-amino ester)s (OM-pBAEs) offer a means for the effective implementation of gene therapeutics in the near future. A fine-tuning of OM-pBAEs to meet application requirements is achieved by the proportional balance of oligopeptides used and provide gene carriers with high transfection efficacy, low toxicity, precise targeting, biocompatibility, and biodegradability. Understanding the influence and conformation of each building block at molecular and biological levels is therefore pivotal for further development and improvement of these gene carriers. Herein, we unmask the role of individual OM-pBAE components and their conformation in OM-pBAE/polynucleotide nanoparticles using a combination of fluorescence resonance energy transfer, enhanced darkfield spectral microscopy, atomic force microscopy, and microscale thermophoresis. We found that modifying the pBAE backbone with three end-terminal amino acids produces unique mechanical and physical properties for each combination. Higher adhesion properties are seen with arginine and lysine-based hybrid nanoparticles, while histidine provides an advantage in terms of construct stability. Our results shed light on the high potential of OM-pBAEs as gene delivery vehicles and provide insights into the influence of the nature of surface charges and the chemical nature of the pBAE modifications on their paths towards endocytosis, endosomal escape, and transfection.

5.
Colloids Surf B Biointerfaces ; 222: 113019, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36435028

RESUMEN

Drug and gene delivery systems based on polymeric nanoparticles offer a greater efficacy and a reduced toxicity compared to traditional formulations. Recent studies have evidenced that their internalization, biodistribution and efficacy can be affected, among other factors, by their mechanical properties. Here, we analyze by means of Atomic Force Microscopy force spectroscopy how composition, surface functionalization and loading affect the mechanics of nanoparticles. For this purpose, nanoparticles made of Poly(lactic-co-glycolic) (PLGA) and Ethyl cellulose (EC) with different functionalizations and loading were prepared by nano-emulsion templating using the Phase Inversion Composition method (PIC) to form the nano-emulsions. A multiparametric nanomechanical study involving the determination of the Young's modulus, maximum deformation and breakthrough force was carried out. The obtained results showed that composition, surface functionalization and loading affect the nanomechanical properties in a different way, thus requiring, in general, to consider the overall mechanical properties after the addition of a functionalization or loading. A graphical representation method has been proposed enabling to easily identify mechanically equivalent formulations, which is expected to be useful in the development of soft polymeric nanoparticles for pre-clinical and clinical use.


Asunto(s)
Nanopartículas , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Poliglicólico/química , Ácido Láctico/química , Distribución Tisular , Nanopartículas/química
6.
Langmuir ; 27(21): 13165-72, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21936555

RESUMEN

Atomic force microscopy (AFM) has been used to study the structural and mechanical properties of low concentrated spin-coated dioleoylphosphatidylcholine (DOPC) layers in dry environment (RH ≈ 0%) at the nanoscale. It is shown that for concentrations in the 0.1-1 mM range the structure of the DOPC spin-coated samples consists of an homogeneous lipid monolayer ∼1.3 nm thick covering the whole substrate on top of which lipid bilayer (or multilayer) micro- and nanometric patches and rims are formed. The thickness of the bilayer structures is found to be ∼4.5 nm (or multiples of this value for multilayer structures), while the lateral dimensions range from micrometers to tens of nanometer depending on the lipid concentration. The force required to break a bilayer (breakthrough force) is found to be ∼0.24 nN. No dependence of the mechanical values on the lateral dimensions of the bilayer structures is evidenced. Remarkably, the thickness and breakthrough force values of the bilayers measured in dry environment are very similar to values reported in the literature for supported DOPC bilayers in pure water.


Asunto(s)
Membrana Dobles de Lípidos/química , Fenómenos Mecánicos , Microscopía de Fuerza Atómica , Nanotecnología , Fosfatidilcolinas/química , Silicatos de Aluminio/química , Soluciones
7.
Eur J Pharm Biopharm ; 156: 155-164, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32927077

RESUMEN

During the last few decades, extensive efforts has been made to design nanocarriers to transport drugs into the central nervous system (CNS). However, its efficacy is limited due to the presence of the Blood-Brain Barrier (BBB) which greatly reduces drug penetration making Drug Delivery Systems (DDS) necessary. Polymeric nanoparticles (NPs) have been reported to be appropriate for this purpose and in particular, poly(lactic-co-glycolic acid) (PLGA) has been used for its ability to entrap small molecule drugs with great efficiency and the ease with which it functionalizes NPs. Despite the fact that their synthetic identity has been studied in depth, the biological identity of such manufactured polymers still remains unknown as does their biodistribution and in vivo fate. This biological identity is a result of their interaction with blood proteins, the so-called "protein corona" which tends to alter the behavior of polymeric nanoparticles in the body. The aim of the present research is to identify the proteins bounded to polymeric nanoparticles designed to selectively interact with the BBB. For this purpose, four different PLGA NPs were prepared and analyzed: (i) "PLGA@Drug," in which a model drug was encapsulated in its core; (ii) "8D3-PLGA" NPs where the PLGA surface was functionalized with a monoclonal anti-transferrin receptor antibody (8D3 mAb) in order to specifically target the BBB; (iii) "8D3-PLGA@Drug" in which the PLGA@Drug surface was functionalized using the same antibody described above and (iv) bare PLGA NPs which were used as a control. Once the anticipated protein corona NPs were obtained, proteins decorating both bare and functionalized PLGA NPs were isolated and analyzed. Apart from the indistinct interaction with PLGA NPs with the most abundant serum proteins, specific proteins could also be identified in the case of functionalized PLGA NPs. These findings may provide valuable insight into designing novel vehicles based on PLGA NPs for crossing the BBB.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Nanopartículas/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/metabolismo , Proteínas/metabolismo , Tiazolidinedionas/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Emulsiones/síntesis química , Emulsiones/metabolismo , Humanos , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/síntesis química , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Proteínas/síntesis química , Tiazolidinedionas/síntesis química
8.
ACS Appl Mater Interfaces ; 11(37): 33620-33627, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31448892

RESUMEN

Cell lipid membranes are the site of vital biological processes, such as motility, trafficking, and sensing, many of which involve mechanical forces. Elucidating the interplay between such bioprocesses and mechanical forces requires the use of tools that apply and measure piconewton-level forces, e.g., optical tweezers. Here, we introduce the combination of optical tweezers with free-standing lipid bilayers, which are fully accessible on both sides of the membrane. In the vicinity of the lipid bilayer, optical trapping would normally be impossible due to optical distortions caused by pockets of the solvent trapped within the membrane. We solve this by drastically reducing the size of these pockets via tuning of the solvent and flow cell material. In the resulting flow cells, lipid nanotubes are straightforwardly pushed or pulled and reach lengths above half a millimeter. Moreover, the controlled pushing of a lipid nanotube with an optically trapped bead provides an accurate and direct measurement of important mechanical properties. In particular, we measure the membrane tension of a free-standing membrane composed of a mixture of dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) to be 4.6 × 10-6 N/m. We demonstrate the potential of the platform for biophysical studies by inserting the cell-penetrating trans-activator of transcription (TAT) peptide in the lipid membrane. The interactions between the TAT peptide and the membrane are found to decrease the value of the membrane tension to 2.1 × 10-6 N/m. This method is also fully compatible with electrophysiological measurements and presents new possibilities for the study of membrane mechanics and the creation of artificial lipid tube networks of great importance in intra- and intercellular communication.


Asunto(s)
Membrana Celular/química , Dispositivos Laboratorio en un Chip , Membrana Dobles de Lípidos/química , Nanotubos/química , Pinzas Ópticas , 1,2-Dipalmitoilfosfatidilcolina/química , Fosfatidilcolinas/química , Tensión Superficial
9.
Colloids Surf B Biointerfaces ; 172: 400-406, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30195157

RESUMEN

In this study, we show that dry saturated phospholipid layers prepared by the spin-coating technique could present thinner regions associated to interdigitated phases under some conditions. The morphological characteristics of lipid layers of saturated phosphocholines, such as dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC), have been measured by Atomic Force Microscopy and revealed that the presence of interdigitated regions is not induced by the same parameters that induce them in hydrated samples. To achieve these results the effect of the lipid hidrocabonated chain length, the presence of alcohol in the coating solution, the spinning velocity and the presence of cholesterol were tested. We showed that DPPC and DSPC bilayers, on the one side, can show structures with similar height than interdigitated regions observed in hydrated samples, while, on the other side, DLPC and DMPC tend to show no evidence of interdigitation. Results indicate that the presence of interdigitated areas is due to the presence of lateral tensions and, hence, that they can be eliminated by releasing these tensions by, for instance, the addition of cholesterol. These results demonstrate that interdigitation in lipid layers is a rather general phenomena and can be observed in lipid bilayers in dry conditions.


Asunto(s)
Aire , Membrana Dobles de Lípidos/química , Alcoholes/química , Colesterol/química , Lípidos/química , Microscopía de Fuerza Atómica , Soluciones
10.
Colloids Surf B Biointerfaces ; 116: 295-302, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24508809

RESUMEN

We investigate the effects of Cholesterol (Chol) in the structural and nanomechanical properties of binary and ternary spin-coated single lipid bilayers made of Dioleoylphosphatidylcholine (DOPC) and Sphingomyelin (SM) in dry conditions. We show that for the DOPC/Chol bilayers, Chol induces an initial increase of the bilayer thickness, followed by decrease for concentrations above 30% Chol. The mechanical properties, instead, appear practically insensitive to the Chol content. For the SM/Chol bilayers we have observed both the thinning of the bilayer and the decrease of the force necessary to break it for Chol content above 40 mol%. In both binary mixtures phase separation is not observed. For ternary single bilayers of DOPC/SM/Chol, Chol induces phase segregation and the formation of domains resembling lipid rafts. The domains show a thickness and mechanical response clearly distinct from the surrounding phase and dependent on the relative Chol content. Based on the results obtained for the binary mixtures, DOPC- and SM-enriched domains can be identified. We highlight that many of the effects of Chol reported here for the dry multicomponent single lipid bilayers resemble closely those observed in hydrated bilayers, thus offering an additional insight into their properties.


Asunto(s)
Colesterol/química , Membrana Dobles de Lípidos/química , Nanoestructuras/química , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
11.
Nanoscale Res Lett ; 8(1): 305, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23819688

RESUMEN

We show that optical visualization of ultrathin mica flakes on metallic substrates is viable using semitransparent gold as substrates. This enables to easily localize mica flakes and rapidly estimate their thickness directly on gold substrates by conventional optical reflection microscopy. We experimentally demonstrate it by comparing optical images with atomic force microscopy images of mica flakes on semitransparent gold. Present results open the possibility for simple and rapid characterization of thin mica flakes as well as other thin sheets directly on metallic substrates.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda