Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cytotherapy ; 26(5): 444-455, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38363248

RESUMEN

BACKGROUND AIMS: Coronavirus disease 2019 (COVID-19) is characterized by a broad spectrum of clinical manifestations with the potential to progress to multiple organ dysfunction in severe cases. Extracellular vesicles (EVs) carry a range of biological cargoes, which may be used as biomarkers of disease state. METHODS: An exploratory secondary analysis of the SARITA-2 and SARITA-1 datasets (randomized clinical trials on patients with mild and moderate/severe COVID-19) was performed. Serum-derived EVs were used for proteomic analysis to identify enriched biological processes and key proteins, thus providing insights into differences in disease severity. Serum-derived EVs were separated from patients with COVID-19 by size exclusion chromatography and nanoparticle tracking analysis was used to determine particle concentration and diameter. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was performed to identify and quantify protein signatures. Bioinformatics and multivariate statistical analysis were applied to distinguish candidate proteins associated with disease severity (mild versus moderate/severe COVID-19). RESULTS: No differences were observed in terms of the concentration and diameter of enriched EVs between mild (n = 14) and moderate/severe (n = 30) COVID-19. A total of 414 proteins were found to be present in EVs, of which 360 were shared while 48 were uniquely present in severe/moderate compared to mild COVID-19. The main biological signatures in moderate/severe COVID-19 were associated with platelet degranulation, exocytosis, complement activation, immune effector activation, and humoral immune response. Von Willebrand factor, serum amyloid A-2 protein, histone H4 and H2A type 2-C, and fibrinogen ß-chain were the most differentially expressed proteins between severity groups. CONCLUSION: Exploratory proteomic analysis of serum-derived EVs from patients with COVID-19 detected key proteins related to immune response and activation of coagulation and complement pathways, which are associated with disease severity. Our data suggest that EV proteins may be relevant biomarkers of disease state and prognosis.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Proteómica , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Humanos , COVID-19/sangre , COVID-19/diagnóstico , COVID-19/inmunología , Vesículas Extracelulares/metabolismo , Proteómica/métodos , Femenino , Masculino , Persona de Mediana Edad , Biomarcadores/sangre , Anciano , Adulto , Espectrometría de Masas en Tándem , Cromatografía Liquida
2.
Mol Cell Proteomics ; 20: 100118, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34186243

RESUMEN

Oral squamous cell carcinoma (OSCC) has high mortality rates that are largely associated with lymph node metastasis. However, the molecular mechanisms that drive OSCC metastasis are unknown. Extracellular vesicles (EVs) are membrane-bound particles that play a role in intercellular communication and impact cancer development and progression. Thus, profiling EVs would be of great significance to decipher their role in OSCC metastasis. For that purpose, we used a reductionist approach to map the proteomic, miRNA, metabolomic, and lipidomic profiles of EVs derived from human primary tumor (SCC-9) cells and matched lymph node metastatic (LN1) cells. Distinct omics profiles were associated with the metastatic phenotype, including 670 proteins, 217 miRNAs, 26 metabolites, and 63 lipids differentially abundant between LN1 cell- and SCC-9 cell-derived EVs. A multi-omics integration identified 11 'hub proteins' significantly decreased at the metastatic site compared with primary tumor-derived EVs. We confirmed the validity of these findings with analysis of data from multiple public databases and found that low abundance of seven 'hub proteins' in EVs from metastatic lymph nodes (ALDH7A1, CAD, CANT1, GOT1, MTHFD1, PYGB, and SARS) is correlated with reduced survival and tumor aggressiveness in patients with cancer. In summary, this multi-omics approach identified proteins transported by EVs that are associated with metastasis and which may potentially serve as prognostic markers in OSCC.


Asunto(s)
Vesículas Extracelulares/metabolismo , Neoplasias de la Boca/metabolismo , Animales , Línea Celular , Humanos , Metabolómica , Ratones , MicroARNs , Neoplasias de la Boca/genética , Pronóstico , Proteómica
3.
Oral Dis ; 29(3): 1017-1027, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34902207

RESUMEN

OBJECTIVE: To analyze the proteomic profile of salivary pleomorphic adenoma (PA) and carcinoma ex pleomorphic adenoma (CXPA) samples and correlate them with the malignant transformation of the PA. MATERIALS AND METHODS: Thirty samples (10 PA, 16 CXPA, and 4 residual PA) were microdissected and submitted to liquid chromatography-tandem mass spectrometry (LC-MS/MS). The proteomic data and protein identification were analyzed through LC-MS/MS spectra using the MaxQuant software. RESULTS: The proteomic analysis identified and quantified a total of 240 proteins in which 135 were found in PA, residual PA, and CXPA. The shared proteins were divided into six subgroups, and the proteins that showed statistically significant differences (p > 0.05) and fold-change > or <2.5 in one subgroup to another subgroup were included. Seven proteins (Apolipoprotein A-I-APOA1, haptoglobin-HP, protein of the synaptonemal complex 1-SYCP1, anion transport protein of band 3-SLC4A1, subunit µ1 of AP-1 complex-AP1M1, beta subunit of hemoglobin-HBB, and dermcidin-DCD) were classified as potential protein signatures, being HP, AP1M1, and HBB with higher abundance for PA to residual PA, APOA1 with higher abundance for PA to CXPA, SLC4A1 with lower abundance in the PA to CXPA, SYCP1with lower abundance for residual PA to CXPA, and DCD with higher abundance in the CXPA with epithelial differentiation to myoepithelial differentiation. CONCLUSIONS: In this work, we demonstrated the comparative proteomic profiling of PA, residual PA, and CXPA, and seven were proposed as protein signatures, some of which may be associated with the malignant phenotype acquisition.


Asunto(s)
Adenoma Pleomórfico , Neoplasias de las Glándulas Salivales , Humanos , Adenoma Pleomórfico/genética , Adenoma Pleomórfico/metabolismo , Adenoma Pleomórfico/patología , Neoplasias de las Glándulas Salivales/patología , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem
5.
Beilstein J Nanotechnol ; 15: 1238-1252, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39403117

RESUMEN

Most commercial anticancer nanomedicines are administered intravenously. This route is fast and precise as the drug enters directly into the systemic circulation, without undergoing absorption processes. When nanoparticles come into direct contact with the blood, however, they interact with physiological components that can induce colloidal destabilization and/or changes in their original biochemical identity, compromising their ability to selectively accumulate at target sites. In this way, these systems usually lack active targeting, offering limited therapeutic effectiveness. In the literature, there is a paucity of in-depth studies in complex environments to evaluate nanoparticle stability, protein corona formation, hemolytic activity, and targeting capabilities. To address this issue, fluorescent silica nanoparticles (SiO2NPs) are here functionalized with zwitterionic (kinetic stabilizer) and folate groups (targeting agent) to provide selective interaction with tumor cell lines in biological media. The stability of these dually functionalized SiO2NPs is preserved in unprocessed human plasma while yielding a decrease in the number of adsorbed proteins. Experiments in murine blood further proved that these nanoparticles are not hemolytic. Remarkably, the functionalized SiO2NPs are more internalized by tumor cells than their healthy counterparts. Investigations of this nature play a crucial role in garnering results with greater reliability, allowing the development of nanoparticle-based pharmaceutical drugs that exhibit heightened efficacy and reduced toxicity for medical purposes.

6.
PLoS One ; 19(5): e0303612, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38820505

RESUMEN

Obesity, a burgeoning global health crisis, has tripled in prevalence over the past 45 years, necessitating innovative research methodologies. Adipocytes, which are responsible for energy storage, play a central role in obesity. However, most studies in this field rely on animal models or adipocyte monolayer cell cultures, which are limited in their ability to fully mimic the complex physiology of a living organism, or pose challenges in terms of cost, time consumption, and ethical considerations. These limitations prompt a shift towards alternative methodologies. In response, here we show a 3D in vitro model utilizing the 3T3-L1 cell line, aimed at faithfully replicating the metabolic intricacies of adipocytes in vivo. Using a workable cell line (3T3-L1), we produced adipocyte spheroids and differentiated them in presence and absence of TNF-α. Through a meticulous proteomic analysis, we compared the molecular profile of our adipose spheroids with that of adipose tissue from lean and obese C57BL/6J mice. This comparison demonstrated the model's efficacy in studying metabolic conditions, with TNF-α treated spheroids displaying a notable resemblance to obese white adipose tissue. Our findings underscore the model's simplicity, reproducibility, and cost-effectiveness, positioning it as a robust tool for authentically mimicking in vitro metabolic features of real adipose tissue. Notably, our model encapsulates key aspects of obesity, including insulin resistance and an obesity profile. This innovative approach has the potential to significantly impact the discovery of novel therapeutic interventions for metabolic syndrome and obesity. By providing a nuanced understanding of metabolic conditions, our 3D model stands as a transformative contribution to in vitro research, offering a pathway for the development of small molecules and biologics targeting these pervasive health issues in humans.


Asunto(s)
Células 3T3-L1 , Adipocitos , Obesidad , Esferoides Celulares , Animales , Ratones , Obesidad/metabolismo , Adipocitos/metabolismo , Adipocitos/citología , Esferoides Celulares/metabolismo , Ratones Endogámicos C57BL , Redes y Vías Metabólicas , Diferenciación Celular , Factor de Necrosis Tumoral alfa/metabolismo , Proteómica/métodos
7.
SLAS Discov ; 27(3): 167-174, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35058185

RESUMEN

Worldwide obesity, defined as abnormal or excessive fat accumulation that may result in different comorbidities, is considered a pandemic condition that has nearly tripled in the last 45 years. Most studies on obesity use animal models or adipocyte monolayer cell culture to investigate adipose tissue. However, besides monolayer cell culture approaches do not fully recapitulate the physiology of living organisms, there is a growing need to reduce or replace animals in research. In this context, the development of 3D self-organized structures has provided models that better reproduce the in vitro aspects of the in vivo physiology in comparison to traditional monolayer cell culture. Besides, recent advances in omics technologies have allowed us to characterize these cultures at the proteome, metabolome, transcription factor, DNA-binding and transcriptomic levels. These two combined approaches, 3D culture and omics, have provided more realistic data about determined conditions. Thereby, here we focused on the development of an obesity study pipeline including proteomic analysis to validate adipocyte-derived spheroids. Through the combination of collected mass spectrometry data from differentiated 3T3-L1 spheroids and from murine white adipose tissue (WAT), we identified 1732 proteins in both samples. By using a comprehensive proteomic analysis, we observed that the in vitro 3D culture of differentiated adipocytes shares important molecular pathways with the WAT, including expression of proteins involved in central metabolic process of the adipose tissue. Together, our results show a combination of an orthogonal method and an image-based analysis that constitutes a useful pipeline to be applied in 3D adipocyte culture.


Asunto(s)
Organoides , Proteómica , Animales , Técnicas de Cultivo Tridimensional de Células , Espectrometría de Masas , Ratones , Obesidad , Proteómica/métodos
8.
J Proteomics ; 254: 104474, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34990821

RESUMEN

Syndecans belong to the family of transmembrane heparan sulfate proteoglycans and are associated with many physiopathological processes, including oral cancer. As previously shown soluble syndecan-1 (SDC1) fragments and synthetic SDC1 peptide were able to induce cell migration in oral cancer cell lines. In order to explore the role of SDC1 in oral cancer, we have investigated SDC1 interacting partners and its functional role in oral cancer models. Here we have shown that SDC1 interacts with follistatin-related protein 1 (FSTL1) by its ectodomain (ectoSDC1) and extracellular juxtamembrane peptide (pepSDC1) and that their transcript levels can affect tumor events. Using orthotopic mouse model we identified that the knock-down for FSTL1 (shFSTL1) or for both FSTL1 and SDC1 (sh2KD) produced less aggressive and infiltrative tumors, with lower keratinization deposition, but with increased levels of epithelial-mesenchymal transition and proliferation compared to control and SDC1 knock-down. Based on cell culture assays, we suggest that the shFSTL1 effect on tumor tissues might be from significant increase of mRNA levels of Activin A (ActA) and its resceptors. This study shows for the first time two different complexes, SDC1 and FSTL1; pepSDC1 and FSTL1, exhibiting a close relationship in cell signaling events, as FSTL1 promotes a more aggressive phenotype. SIGNIFICANCE: This work contributes to the understanding of new SDC1 functions, based on the investigation of protein-protein complex formation in Oral Squamous cell carcinoma (OSCC) models. The FSTL1 identification, as an interacting partner of SDC1 ectodomain and of its derived peptide promotes molecular events that favors cancer development and progression, as highlighted by Activin A (ActA) and Epithelial-mesenchymal transition (EMT) gene expression and by changes in the phenotype of orthotopic OSCC mouse tumor tissues when SDC1-FSTL1 expression is modulated.


Asunto(s)
Carcinoma de Células Escamosas , Proteínas Relacionadas con la Folistatina , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Animales , Proteínas Relacionadas con la Folistatina/genética , Ratones , Fenotipo , Carcinoma de Células Escamosas de Cabeza y Cuello , Sindecano-1/genética , Sindecano-1/metabolismo
9.
Int J Oncol ; 58(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33846781

RESUMEN

Lung cancer is the leading cause of cancer­associated death worldwide and exhibits intrinsic and acquired therapeutic resistance to cisplatin (CIS). The present study investigated the role of mTOR signaling and other signaling pathways after metformin (MET) treatment in control and cisplatin­resistant A549 cells, mapping pathways and possible targets involved in CIS sensitivity. MTT, flow cytometry, clonogenic assay, western blotting, proteomic analysis using the Stable Isotope Labeling by Amino acids in Cell culture (SILAC) approach and reverse transcription­quantitative PCR were performed. The results revealed that CIS treatment induced mTOR signaling pathway overactivation, and the mTOR status was restored by MET. MET and the mTOR inhibitor rapamycin (RAPA) decreased the viability in control and resistant cells, and decreased the cell size increase induced by CIS. In control cells, MET and RAPA decreased colony formation after 72 h and decreased IC50 values, potentiating the effects of CIS. Proteomics analysis revealed important pathways regulated by MET, including transcription, RNA processing and IL­12­mediated signaling. In CIS­resistant cells, MET regulated the apoptotic process, oxidative stress and G2/M transition. Annexin 4 (ANXA4) and superoxide dismutase 2 (SOD2), involved in apoptosis and oxidative stress, respectively, were chosen to validate the SILAC analysis and may represent potential therapeutic targets for lung cancer treatment. In conclusion, the chemosensitizing and antiproliferative effects of MET were associated with mTOR signaling and with potential novel targets, such as ANXA4 and SOD2, in human lung cancer cells.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cisplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Metformina/farmacología , Células A549 , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Cisplatino/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Metformina/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo
10.
Nat Commun ; 9(1): 3598, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185791

RESUMEN

Different regions of oral squamous cell carcinoma (OSCC) have particular histopathological and molecular characteristics limiting the standard tumor-node-metastasis prognosis classification. Therefore, defining biological signatures that allow assessing the prognostic outcomes for OSCC patients would be of great clinical significance. Using histopathology-guided discovery proteomics, we analyze neoplastic islands and stroma from the invasive tumor front (ITF) and inner tumor to identify differentially expressed proteins. Potential signature proteins are prioritized and further investigated by immunohistochemistry (IHC) and targeted proteomics. IHC indicates low expression of cystatin-B in neoplastic islands from the ITF as an independent marker for local recurrence. Targeted proteomics analysis of the prioritized proteins in saliva, combined with machine-learning methods, highlights a peptide-based signature as the most powerful predictor to distinguish patients with and without lymph node metastasis. In summary, we identify a robust signature, which may enhance prognostic decisions in OSCC and better guide treatment to reduce tumor recurrence or lymph node metastasis.


Asunto(s)
Biomarcadores de Tumor/análisis , Carcinoma de Células Escamosas/mortalidad , Neoplasias de la Boca/mortalidad , Recurrencia Local de Neoplasia/diagnóstico , Proteómica/métodos , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/patología , Toma de Decisiones Clínicas , Femenino , Estudios de Seguimiento , Humanos , Inmunohistoquímica , Metástasis Linfática , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/patología , Recurrencia Local de Neoplasia/prevención & control , Péptidos/análisis , Valor Predictivo de las Pruebas , Pronóstico , Estudios Retrospectivos , Saliva/química , Tasa de Supervivencia
11.
J Proteomics ; 151: 53-65, 2017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-27576135

RESUMEN

ADAM17 (a disintegrin and metalloproteinase 17) is a plasma membrane metalloprotease involved in proteolytic release of the extracellular domain of many cell surface molecules, a process known as ectodomain shedding. Through this process, ADAM17 is implicated in several aspects of tumor growth and metastasis in a broad range of tumors, including head and neck squamous cell carcinomas (HNSCC). In this study, mass spectrometry-based proteomics approaches revealed glypican-1 (GPC1) as a new substrate for ADAM17, and its shedding was confirmed to be metalloprotease-dependent, induced by a pleiotropic agent (PMA) and physiologic ligand (EGF), and inhibited by marimastat. In addition, immunoblotting analysis of GPC1 in the extracellular media from control and ADAM17shRNA pointed to a direct involvement of ADAM17 in the cleavage of GPC1. Moreover, mass spectrometry-based interactome analysis of GPC1 revealed biological functions and pathways related mainly to cellular movement, adhesion and proliferation, which were events also modulated by up regulation of full length and cleavage GPC1. Altogether, we showed that GPC1 is a novel ADAM17 substrate, thus the function of GPC1 may be modulated by proteolysis signaling. BIOLOGICAL SIGNIFICANCE: Inhibition of metalloproteases as a therapeutic approach has failed because there is limited knowledge of the degradome of individual proteases as well as the cellular function of cleaved substrates. Using different proteomic techniques, this study uncovered novel substrates that can be modulated by ADAM17 in oral squamous cell carcinoma cell line. Glypican-1 was validated as a novel substrate for ADAM17, with important function in adhesion, proliferation and migration of carcinoma cells. Therefore, this study opens new avenues regarding the proteolysis-mediated function of GPC1 by ADAM17.


Asunto(s)
Proteína ADAM17/metabolismo , Glipicanos/metabolismo , Proteómica/métodos , Carcinoma de Células Escamosas , Línea Celular Tumoral , Micropartículas Derivadas de Células , Neoplasias de Cabeza y Cuello , Humanos , Espectrometría de Masas , Metaloproteasas , Unión Proteica , Proteolisis , Carcinoma de Células Escamosas de Cabeza y Cuello
13.
Sci Rep ; 7(1): 5445, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28710492

RESUMEN

NEK family kinases are serine/threonine kinases that have been functionally implicated in the regulation of the disjunction of the centrosome, the assembly of the mitotic spindle, the function of the primary cilium and the DNA damage response. NEK1 shows pleiotropic functions and has been found to be mutated in cancer cells, ciliopathies such as the polycystic kidney disease, as well as in the genetic diseases short-rib thoracic dysplasia, Mohr-syndrome and amyotrophic lateral sclerosis. NEK1 is essential for the ionizing radiation DNA damage response and priming of the ATR kinase and of Rad54 through phosphorylation. Here we report on the structure of the kinase domain of human NEK1 in its apo- and ATP-mimetic inhibitor bound forms. The inhibitor bound structure may allow the design of NEK specific chemo-sensitizing agents to act in conjunction with chemo- or radiation therapy of cancer cells. Furthermore, we characterized the dynamic protein interactome of NEK1 after DNA damage challenge with cisplatin. Our data suggest that NEK1 and its interaction partners trigger the DNA damage pathways responsible for correcting DNA crosslinks.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Reparación del ADN , Quinasa 1 Relacionada con NIMA/química , Inhibidores de Proteínas Quinasas/química , Antineoplásicos/química , Sitios de Unión , Cisplatino/química , Clonación Molecular , Cristalografía por Rayos X , Daño del ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Quinasa 1 Relacionada con NIMA/antagonistas & inhibidores , Quinasa 1 Relacionada con NIMA/genética , Quinasa 1 Relacionada con NIMA/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
14.
Structure ; 22(1): 94-103, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24210757

RESUMEN

Inhibition of the biosynthesis of tetrahydrofolate (THF) has long been a focus in the treatment of both cancer and infectious diseases. Dihydrofolate reductase (DHFR), which catalyzes the last step, is one of the most thoroughly explored targets of this pathway, but there are no DHFR inhibitors used for tuberculosis treatment. Here, we report a structural, site-directed mutagenesis and calorimetric analysis of Mycobacterium tuberculosis DHFR (MtDHFR) in complex with classical DHFR inhibitors. Our study provides insights into the weak inhibition of MtDHFR by trimethoprim and other antifolate drugs, such as pyrimethamine and cycloguanil. The construction of the mutant Y100F, together with calorimetric studies, gives insights into low affinity of MtDHFR for classical DHFR inhibitors. Finally, the structures of MtDHFR in complex with pyrimethamine and cycloguanil define important interactions in the active site and provide clues to the more effective design of antibiotics targeted against MtDHFR.


Asunto(s)
Proteínas Bacterianas/química , Inhibidores Enzimáticos/química , Antagonistas del Ácido Fólico/química , Mycobacterium tuberculosis/química , Tetrahidrofolato Deshidrogenasa/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Calorimetría , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Proguanil/química , Conformación Proteica , Pirimetamina/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Termodinámica , Triazinas/química , Trimetoprim/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda