Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Angew Chem Int Ed Engl ; 60(30): 16436-16441, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-33847037

RESUMEN

Nanoscale manipulation and characterization of individual molecules is necessary to understand the intricacies of molecular structure, which governs phenomena such as reaction mechanisms, catalysis, local effective temperatures, surface interactions, and charge transport. Here we utilize Raman enhancement between two nanostructured electrodes in combination with direct charge transport measurements to allow for simultaneous characterization of the electrical, optical, and mechanical properties of a single molecule. This multi-dimensional information yields repeatable, self-consistent, verification of single-molecule resolution, and allows for detailed analysis of structural and configurational changes of the molecule in situ. These experimental results are supported by a machine-learning based statistical analysis of the spectral information and calculations to provide insight into the correlation between structural changes in a single-molecule and its charge-transport properties.

2.
Nanoscale ; 14(16): 6248-6257, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35411364

RESUMEN

Quantum interference effects in single-molecule devices can significantly enhance the thermoelectric properties of these devices. However, single-molecule systems have limited utility for power conversion. In this work, we study the effects of destructive quantum interference in molecular junctions on the thermoelectric properties of hybrid, 2-dimensional molecule-nanoparticle monolayers. We study two isomers of benzenedithiol molecules, with either a para or meta configuration for the thiol groups, as molecular interlinkers between gold nanoparticles in the structure. The asymmetrical structure in the meta configuration significantly improves the Seebeck coefficient and power factor over the para configuration. These results suggest that thermoelectric performance of engineered, nanostructured material can be enhanced by harnessing quantum interference effects in the substituent components.

3.
J Vis Exp ; (173)2021 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-34309592

RESUMEN

Gold nanoparticles (Au nanoparticles) that are ~12 nm in diameter were synthesized by rapidly injecting a solution of 150 mg (0.15 mmol) of tetrachloroauric acid in 3.0 g (3.7 mmol, 3.6 mL) of oleylamine (technical grade) and 3.0 mL of toluene into a boiling solution of 5.1 g (6.4 mmol, 8.7 mL) of oleylamine in 147 mL of toluene. While boiling and mixing the reaction solution for 2 hours, the color of the reaction mixture changed from clear, to light yellow, to light pink, and then slowly to dark red. The heat was then turned off, and the solution was allowed to gradually cool down to room temperature for 1 hour. The gold nanoparticles were then collected and separated from the solution using a centrifuge and washed three times; by vortexing and dispersing the gold nanoparticles in 10 mL portions of toluene, and then precipitating the gold nanoparticles by adding 40 mL portions of methanol and spinning them in a centrifuge. The solution was then decanted to remove any remaining byproducts and unreacted starting materials. Drying the gold nanoparticles in a vacuum environment produced a solid black pellet; which could be stored for long periods of time (up to one year) for later use, and then redissolved in organic solvents such as toluene.


Asunto(s)
Oro , Nanopartículas del Metal , Transición de Fase , Solventes , Tolueno
4.
ACS Sens ; 6(2): 565-572, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33529001

RESUMEN

Two commonly observed charge transport mechanisms in single-molecule junctions are coherent tunneling and incoherent hopping. It has been generally believed that tunneling processes yield temperature-independent conductance behavior and hopping processes exhibit increasing conductance with increasing temperature. However, it has recently been proposed that tunneling can also yield temperature-dependent transport due to the thermal broadening of the Fermi energy of the contacts. In this work, we examine a series of rigid, planar furan oligomers that are free from a rotational internal degree of freedom to examine the temperature dependence of tunneling transport directly over a wide temperature range (78-300 K). Our results demonstrate conductance transition from a temperature-independent regime to a temperature-dependent regime. By examining various hopping and tunneling models and the correlation between the temperature dependence of conductance and molecular orbital energy offset from the Fermi level, we conclude thermally assisted tunneling is the dominant cause for the onset of temperature-dependent conductance in these systems.


Asunto(s)
Furanos , Nanotecnología , Temperatura
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda