RESUMEN
Fusarium head blight is a devastating disease that causes severe yield loses and mycotoxin contamination in wheat grain. Additionally, balancing the trade-off between wheat production and disease resistance has proved challenging. This study aimed to expand the genetic tools of the endophyte Phomopsis liquidambaris against Fusarium graminearum. Specifically, we engineered a UDP-glucosyltransferase-expressing P. liquidambaris strain (PL-UGT) using ADE1 as a selection marker and obtained a deletion mutant using an inducible promoter that drives Cas9 expression. Our PL-UGT strain converted deoxynivalenol (DON) into DON-3-G in vitro at a rate of 71.4 % after 36 h. DON inactivation can be used to confer tolerance in planta. Wheat seedlings inoculated with endophytic strain PL-UGT showed improved growth compared with those inoculated with wildtype P. liquidambaris. Strain PL-UGT inhibited the growth of Fusarium graminearum and reduced infection rate to 15.7 %. Consistent with this finding, DON levels in wheat grains decreased from 14.25 to 0.56 µg/g when the flowers were pre-inoculated with PL-UGT and then infected with F. graminearum. The expression of UGT in P. liquidambaris was nontoxic and did not inhibit plant growth. Endophytes do not enter the seeds nor induce plant disease, thereby representing a novel approach to fungal disease control.
Asunto(s)
Ascomicetos , Endófitos , Fusarium , Glucosiltransferasas , Enfermedades de las Plantas , Tricotecenos , Triticum , Triticum/microbiología , Triticum/genética , Tricotecenos/metabolismo , Fusarium/genética , Fusarium/efectos de los fármacos , Fusarium/enzimología , Endófitos/genética , Endófitos/enzimología , Endófitos/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Ascomicetos/genética , Ascomicetos/efectos de los fármacos , Ascomicetos/enzimología , Resistencia a la Enfermedad/genética , Micotoxinas/metabolismoRESUMEN
Sepsis is a severe systemic infectious disease that often leads to multi-organ dysfunction. One of the common and serious complications of sepsis is renal injury. In this study, we aimed to investigate the potential mechanistic role of a novel compound called H-151 in septic kidney injury. We also examined its impact on renal function and mouse survival rates. Initially, we confirmed abnormal activation of the STING-TBK1 signaling pathway in the kidneys of septic mice. Subsequently, we treated the mice with H-151 and observed significant improvement in sepsis-induced renal dysfunction. This was evidenced by reductions in blood creatinine and urea nitrogen levels, as well as a marked decrease in inflammatory cytokine levels. Furthermore, H-151 substantially improved the seven-day survival rate of septic mice, indicating its therapeutic potential. Importantly, H-151 also exhibited an inhibitory effect on renal apoptosis levels, further highlighting its mechanism of protecting against septic kidney injury. These study findings not only offer new insights into the treatment of septic renal injury but also provide crucial clues for further investigations into the regulatory mechanisms of the STING-TBK1 signaling pathway and potential drug targets.
Asunto(s)
Lesión Renal Aguda , Modelos Animales de Enfermedad , Lipopolisacáridos , Proteínas de la Membrana , Proteínas Serina-Treonina Quinasas , Sepsis , Transducción de Señal , Animales , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/tratamiento farmacológico , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Sepsis/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Masculino , Riñón/patología , Riñón/metabolismo , Riñón/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ratones Endogámicos C57BL , Citocinas/metabolismoRESUMEN
To gain the effects of N fertilizer applications on N2O emissions and local climate change in fertilized rubber (Hevea brasiliensis) plantations in the tropics, we measured N2O fluxes from fertilized (75 kg N ha(-1) yr(-1)) and unfertilized rubber plantations at Xishuangbanna in southwest China over a 2-year period. The N2O emissions from the fertilized and unfertilized plots were 4.0 and 2.5 kg N ha(-1) yr(-1), respectively, and the N2O emission factor was 1.96%. Soil moisture, soil temperature, and the area weighted mean ammoniacal nitrogen (NH4(+)-N) content controlled the variations in N2O flux from the fertilized and unfertilized rubber plantations. NH4(+)-N did not influence temporal changes in N2O emissions from the trench, slope, or terrace plots, but controlled spatial variations in N2O emissions among the treatments. On a unit area basis, the 100-year carbon dioxide equivalence of the fertilized rubber plantation N2O offsets 5.8% and 31.5% of carbon sink of the rubber plantation and local tropical rainforest, respectively. When entire land area in Xishuangbanna is considered, N2O emissions from fertilized rubber plantations offset 17.1% of the tropical rainforest's carbon sink. The results show that if tropical rainforests are converted to fertilized rubber plantations, regional N2O emissions may enhance local climate warming.