Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 20(20)2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-33050402

RESUMEN

Uncertainty is intrinsic in most of the complex systems, especially when the systems have to interact with the physical environment; therefore, handling uncertainty is critical in the Internet of Things (IoT). In this paper, we propose a semantic-based approach to build the belief network in IoT systems to handle the uncertainties. Semantics is the functionality description of any system component. Semantic Match mechanisms can construct the appropriate structures to compare the consistency between different sources of data based on the same functionality. In the approach, we define the belief property of every system component and develop the related algorithms to update the belief value. Furthermore, the related mechanisms and algorithms for data fusion and fault detection based on the belief property are described to explain how the approach works in the IoT systems. Several simulation experiments are used to evaluate the proposed approach, and the results indicate that the approach can work as expected. More accurate data are fused from the inaccurate devices and the fault in one node is automatically detected.

2.
Bioresour Technol ; 397: 130498, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432542

RESUMEN

Bioaugmentation is an efficient method for improving the efficiency of coking wastewater removal. Nevertheless, how different immobilization approaches affect the efficiency of bioaugmentation remains unclear, as does the corresponding mechanism. With the assistance of immobilized bioaugmentation strain Rhodococcus biphenylivorans B403, the removal of synthetic coking wastewater was investigated (drying agent, alginate agent, and absorption agent). The reactor containing the absorption agent exhibited the highest average removal efficiency of phenol (99.74 %), chemical oxygen demand (93.09 %), and NH4+-N (98.18 %). Compared to other agents, the covered extracellular polymeric substance on the absorption agent surface enhanced electron transfer and quorum sensing, and the promoted quorum sensing benefited the activated sludge stability and microbial regulation. The phytotoxicity test revealed that the wastewater's toxicity was greatly decreased in the reactor with the absorption agent, especially under high phenol concentrations. These findings showed that the absorption agent was the most suitable for wastewater treatment bioaugmentation.


Asunto(s)
Carbón Orgánico , Coque , Rhodococcus , Aguas Residuales , Fenol , Amoníaco , Regulación hacia Arriba , Percepción de Quorum , Matriz Extracelular de Sustancias Poliméricas/química , Electrones , Fenoles , Aguas del Alcantarillado/química , Coque/análisis
3.
Environ Sci Pollut Res Int ; 31(23): 33752-33762, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38687450

RESUMEN

High concentration of phenol residues in soil are harmful to human health and ecological safety. However, limited information is available on the in-situ bioremediation of phenol-contaminated soil using biochar as a carrier for bacteria. In this study, bamboo -derived biochar was screened as a carrier to assemble microorganism-immobilized composite with Rhodococcus pyridinivorans B403. Then, SEM used to observe the micromorphology of composite and its bioactivity was detected in solution and soil. Finally, we investigated the effects of free B403 and biochar-immobilized B403 (BCJ) on phenol biodegradation in two types of soils and different initial phenol concentrations. Findings showed that bacterial cells were intensively distributed in/onto the carriers, showing high survival. Immobilisation increased the phenol degradation rate of strain B403 by 1.45 times (37.7 mg/(L·h)). The phenol removed by BCJ in soil was 81% higher than free B403 on the first day. Moreover, the removal of BCJ remained above 51% even at phenol concentration of 1,500 mg/kg, while it was only 15% for free B403. Compared with the other treatment groups, BCJ showed the best phenol removal effect in both tested soils. Our results indicate that the biochar-B403 composite has great potential in the remediation of high phenol-contaminated soil.


Asunto(s)
Biodegradación Ambiental , Carbón Orgánico , Rhodococcus , Contaminantes del Suelo , Suelo , Rhodococcus/metabolismo , Carbón Orgánico/química , Contaminantes del Suelo/metabolismo , Suelo/química , Fenol , Microbiología del Suelo
4.
Water Res ; 267: 122478, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39316963

RESUMEN

Pyridine and quinoline are typical nitrogenous heterocyclic compounds with different structures that are found in coking wastewater. However, neither the corresponding mechanism nor its effect on the degradation of NH4+-N under phenol stress is known. In this study, the effects of pyridine and quinoline degradation on NH4+-N removal under phenol stress were evaluated using three lab-scale sequencing batch reactors. The average NH4+-N removal efficiencies of the reactors were 99.46 %, 88.86 %, and 98.64 %. With the increased concentration of pyridine and quinoline, NH4+-N and NO3--N accumulated to 58.37 mg/L and 141.37 mg/L, respectively, due to the lack of an electron donor and anaerobic environment. The addition of pyridine and quinoline significantly improved antioxidant response and altered the nitrification pathway. The nitrification process shifted from the mediation of amo and hao to the mediation of Ncd2 due to oxidative stress induced by pyridine and quinoline. Furthermore, oxidative stress interferes with the metabolism of carbon sources, resulting in decreased biomass. These results provide a new perspective for coking wastewater treatment processes.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda