Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Pestic Biochem Physiol ; 202: 105954, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879337

RESUMEN

Fungicides are often used prophylactically, to control fungal diseases. Although fungicides have been designed to control pests/fungi, they frequently share molecular targets with non-target species, including humans. Tebuconazole, a fungicide belonging to the class of triazoles, is widely employed, has moderate to high persistence in soil, and can be found in different environmental levels. This fungicide is metabolized to the main hydroxy-derived metabolite, Tebuconazole-tert-butyl-hydroxy (or hydroxytebuconazole). This study aims to unveil the action mechanism of Tebuconazole and the role played by its metabolite, Tebuconazole-tert-butyl-hydroxy (5-(4-Chlorophenyl)-2,2-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)-1,3-pentanediol), within the expected spectrum of toxicity. In silico and in vitro analyses (MTT assay, cell cycle evaluation, annexin/PI assay, ROS accumulation assay, and mitochondrial membrane potential determination) were performed in HepG2 cells for 24 h and 48 h. Although in silico analysis suggested that both Tebuconazole and Tebuconazole-tert-butyl-hydroxy are potentially hepatotoxic, only Tebuconazole affected the tested cell line. Reduced MTT metabolism, and decreased mitochondrial membrane potential were the main findings. In conclusion, the action mechanism of Tebuconazole may be related to mitochondrial dysfunction. However, the findings of this study pointed out that Tebuconazole-tert-butyl-hydroxy does not play an important role in Tebuconazol toxicity. The study has generated new data that will help to understand how fungicides behave in the environment.


Asunto(s)
Fungicidas Industriales , Potencial de la Membrana Mitocondrial , Triazoles , Triazoles/toxicidad , Humanos , Fungicidas Industriales/toxicidad , Células Hep G2 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
2.
J Environ Sci Health B ; 59(4): 142-151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343082

RESUMEN

Fungicides are specifically used for controlling fungal infections. Strobilurins, a class of fungicides originating from the mushroom Strobilurus tenacellus, act on the fungal mitochondrial respiratory chain, interrupting the ATP cycle and causing oxidative stress. Although strobilurins are little soluble in water, they have been detected in water samples (such as rainwater and drinking water), indoor dust, and sediments, and they can bioaccumulate in aquatic organisms. Strobilurins are usually absorbed orally and are mainly eliminated via the bile/fecal route and urine, but information about their metabolites is lacking. Strobilurins have low mammalian toxicity; however, they exert severe toxic effects on aquatic organisms. Mitochondrial dysfunction and oxidative stress are the main mechanisms related to the genotoxic damage elicited by toxic compounds, such as strobilurins. These mechanisms alter genes and cause other dysfunctions, including hormonal, cardiac, neurological, and immunological impairment. Despite limitations, we have been able to compile literature information about strobilurins. Many studies have dealt with their toxic effects, but further investigations are needed to clarify their cellular and underlying mechanisms, which will help to find ways to minimize the harmful effects of these compounds.


Asunto(s)
Fungicidas Industriales , Animales , Humanos , Estrobilurinas/toxicidad , Fungicidas Industriales/toxicidad , Fungicidas Industriales/análisis , Estrés Oxidativo , Salud Ambiental , Agua , Mamíferos
3.
Regul Toxicol Pharmacol ; 136: 105288, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36384172

RESUMEN

This paper describes DARAN (Defined Approach for Risk Assessment of New Nitrosamines), an new defined approach that uses lines of reasoning based on structure-activity relationship (SAR) patterns and Read-Across (RAx) to set transparent and acceptable limits for new N-nitrosamines for which no toxicological data exist. We selected the compound 1-methyl-4-nitrosopiperazine (MeNP) as a target to calculate a new acceptable limit on the basis of a more transparent and scientifically reasoned RAx. We used publicly available databases and datasets to retrieve experimental in vitro mutagenicity and in vivo carcinogenicity data for N-nitrosopiperazine compounds and to form the chemical category for an RAx. We carried out SAR analyses to try to understand patterns and to obtain interpretable inferences of variation in carcinogenic potency among the N-nitrosopiperazines compounds and their differences with the potent nitrosamines NDMA (N-nitrosodimethylamine) and NDEA (N-nitrosodiethylamine). To estimate an acceptable limit for the target MeNP, we used the scientifically based hypotheses and the evidence lines of about the influence of structural attributes for a robust RAx. On the basis of the criteria proposed in the Assessment Report EMA/369136/20202 and by using the SAR hypotheses obtained by the analysis, we obtained a robust RAx, scientifically supported assumptions, which resulted in TD50 values predicted from the closest structurally related compounds and a worst-case approach.


Asunto(s)
Nitrosaminas , Nitrosaminas/toxicidad , Nitrosaminas/análisis , Dimetilnitrosamina/análisis , Carcinógenos , Relación Estructura-Actividad , Dietilnitrosamina
4.
Arch Toxicol ; 95(11): 3459-3473, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34436642

RESUMEN

Since organic flame retardants (FRs) have several industrial applications, they have been largely detected in environmental and biological samples, and humans have been highly exposed to them. Although the effects of oral and inhaled FRs have been well studied, dermal exposure to them has only recently been pointed out as a potential route of human exposure. Consequently, the effects of FRs on the skin and secondary target organs have been poorly investigated. This review article summarizes the main findings regarding dermal exposure to FRs, points the limitation of the published studies, and suggests future perspectives for better understanding of how dermal exposure to FRs impacts the human health. This review lists some gaps that must be filled in future studies, including characterization of the bioavailable fraction and assessment of exposure for new FRs, to establish their physiological significance and to improve the development of 3D dermal tissue for more reliable results to be obtained.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Retardadores de Llama , Piel , Humanos , Absorción Cutánea
5.
Ecotoxicol Environ Saf ; 208: 111745, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396071

RESUMEN

Brominated diphenyl ethers (BDEs) are halogenated flame retardants. Several concerns related to persistence and toxicity of BDEs have been resulted in a growing need of BDEs replacement. The use of halogen-free flame retardants (HFFR) has increased as a safer alternative, but little information is available on their toxic potential for environmental health and for developing organisms. Therefore, the aim of this study was to evaluate and compare the toxicity of three congeners of BDEs (BDE-47, BDE-99 and BDE-154) with an HFFR (aluminum diethylphosphinate, ALPI) on zebrafish (Danio rerio) by assessing endpoints of lethality, sub-lethality and teratogenicity at the earlier stages of development. The highest tested concentration of BDE-47 (12.1 mg/L) induced pericardium and yolk sac edemas that first appeared at 48 h post-fertilization (hpf) and then were mostly reabsorbed until 144 hpf. BDE-47 also showed a slight but non-significant tendency to affect swim bladder inflation. The rate of edemas increased in a concentration-dependent manner after exposure to BDE-99, but there were no significant differences. In addition, the congener BDE-99 also presented a slight and non-significant effect on swim bladder inflation, but only at the highest concentration tested. Regarding BDE-154 exposure, the rate of edemas and swim bladder inflation were not affected. Finally, in all ALPI exposure concentrations (0.003 up to 30 mg/L), no sub-lethal or teratogenic effects were observed on developing organisms until 96 hpf. Although further studies are needed, our results demonstrate that when comparing the developmental toxicity induced by flame retardants in zebrafish, the HFFR ALPI may be considered a more suitable alternative to BDE-47.


Asunto(s)
Retardadores de Llama/toxicidad , Éteres Difenilos Halogenados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/fisiología , Animales , Halógenos , Bifenilos Polibrominados
6.
Pestic Biochem Physiol ; 163: 175-184, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31973855

RESUMEN

Emerging contaminants, such as the herbicides trifluralin and tebuthiuron, comprise a class of compounds for which toxicological data are lacking, especially data regarding their harmful effects and biomarkers of exposure. Their potential damage to the environment and non-target organisms makes understanding their toxic mechanisms an urgent matter. Mitochondria, which exert an energy production function, play a vital role in maintaining many cellular activities and therefore are reliable predictors of substance toxicity. This study evaluates whether the herbicides trifluralin and tebuthiuron (at concentrations ranging from 1 to 100 µM) affect isolated rat liver mitochondria. The herbicides were analyzed according to their ability to interact with the mitochondrial membrane and induce swelling, lipoperoxidation, ROS formation, and NAD(P)H oxidation; dissipate the membrane potential; dysregulate calcium homeostasis; and alter ATP and GSH/GSSG levels. Tebuthiuron does not disrupt the mitochondrial biochemistry at any of the tested concentrations. In contrast, trifluralin can disturb the mitochondrial respiration, especially at the highest concentration, but it cannot induce oxidative stress. These results suggest that the aforementioned effects can occur as toxic mechanisms of trifluralin in non-target organisms, as well.


Asunto(s)
Herbicidas , Trifluralina , Animales , Compuestos de Metilurea , Mitocondrias , Mitocondrias Hepáticas , Ratas
7.
Drug Chem Toxicol ; 43(1): 64-70, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30192646

RESUMEN

Humans and animals can be exposed to different chemical forms of mercury (Hg) in the environment. For example, methylmercury (MeHg)-contaminated fish is part of the basic diet of the riparian population in the Brazilian Amazon Basin, which leads to high total blood and plasma Hg levels in people living therein. Hg induces toxic effects mainly through oxidative stress. Different compounds have been used to prevent the damage caused by MeHg-induced reactive oxygen species (ROS). This study aims to investigate the in vivo effects of sub-chronic exposure to low MeHg levels on the mitochondrial oxidative status and to evaluate the niacin protective effect against MeHg-induced oxidative stress. For this purpose, Male Wistar rats were divided into four groups: control group, treated with drinking water on a daily basis; group exposed to MeHg at a dose of 100 µg/kg/day; group that received niacin at a dose of 50 mg/kg/day in drinking water, with drinking water being administered by gavage; group that received niacin at a dose of 50 mg/kg/day in drinking water as well as MeHg at a dose of 100 µg/kg/day. After 12 weeks, the rats, which weighed 500-550 g, were sacrificed, and their liver mitochondria were isolated by standard differential centrifugation. Sub-chronic exposure to MeHg (100 µg/kg/day for 12 weeks) led to mitochondrial swelling (p < 0.05) and induced ROS overproduction as determined by increased DFCH oxidation (p < 0.05), increased gluthatione oxidation (p < 0.05), and reduced protein thiol content (p < 0.05). In contrast, niacin supplementation inhibited oxidative stress, which counteracted and minimized the toxic MeHg effects on mitochondria.


Asunto(s)
Compuestos de Metilmercurio/toxicidad , Mitocondrias Hepáticas/efectos de los fármacos , Niacina/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Masculino , Compuestos de Metilmercurio/administración & dosificación , Mitocondrias Hepáticas/patología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
8.
Toxicol Mech Methods ; 25(1): 34-41, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25299509

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are used as flame retardants, and they have been detected in human blood, adipose tissue and breast milk, a consequence of their physicochemical and bioaccumulative properties, as well as their high environmental persistence. Many studies report liver toxicity related to exposure to PBDEs. In the present study, we investigated the toxicity of BDE-47 and BDE-99 at concentrations ranging from 0.1 to 50 µM in isolated rat liver mitochondria. We evaluated how incubation of a mitochondrial suspension with the PBDEs affected the mitochondrial inner membrane, membrane potential, oxygen consumption, calcium release, mitochondrial swelling, and ATP levels to find out whether the tested compound interfered with the bioenergetics of this organelle. Both PBDEs were toxic to mitochondria: BDE-47 and BDE-99 concentrations equal to or higher than 25 and 50 µM, respectively, modified all the parameters used to assess mitochondrial bioenergetics, which culminated in ATP depletion. These effects stemmed from the ability of both PBDEs to cause Membrane Permeability Transition (MPT) in mitochondria, which impaired mitochondrial bioenergetics. In particular, BDE-47, which has fewer bromine atoms in the molecule, can easily overcome biological membranes what would be responsible for the major negative effects exerted by this congener when compared with BDE-99.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Retardadores de Llama/toxicidad , Éteres Difenilos Halogenados/toxicidad , Mitocondrias Hepáticas/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Relación Dosis-Respuesta a Droga , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Dilatación Mitocondrial/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Ratas Wistar , Factores de Tiempo
9.
J Toxicol Environ Health A ; 77(1-3): 24-36, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24555644

RESUMEN

Brominated flame retardants are used in various consumer goods to make these materials difficult to burn. Polybrominated diphenyl ethers (PBDE), which are representative of this class of retardants, consist of two benzene rings linked by an oxygen atom, and contain between 1 and 10 bromine atoms in their chemical structure, with the possibility of up to 209 different congeners. Among these congeners, BDE-154 (hexa-BDE) is persistent in the environment and easy to detect in the biota, but no apparent information regarding the mechanism underlying action and toxicity is available. Mitochondria, as the main energy-producing organelles, play an important role in the maintenance of various cellular functions. Therefore, mitochondria were used in the present study as an experimental model to determine the effects of BDE-154 congener at concentrations ranging from 0.1 µM to 50 µM. Our results demonstrated that BDE-154 interacts with the mitochondrial membrane, preferably by inserting into the hydrophobic core of the mitochondrial membrane, which partially inhibits respiration, dissipates Δψ, and permeabilizes the inner mitochondrial membrane to deplete ATP. These effects are more pronounced at concentrations equal to or higher than 10 µM. Results also showed that BDE-154 did not induce reactive oxygen species (ROS) accumulation within the mitochondria, indicating the absence of oxidative stress. Therefore, BDE-154 impairs mitochondrial bioenergetics and permeabilizes the mitochondrial membrane, potentially leading to cell death but not via mechanisms involving oxidative stress.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Bifenilos Polibrominados/toxicidad , Adenosina Trifosfato/metabolismo , Animales , Biomarcadores/metabolismo , Respiración de la Célula/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Técnicas In Vitro , Masculino , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
10.
Sci Total Environ ; 912: 168741, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38040350

RESUMEN

Benzotriazoles are heterocyclic compounds typically presenting a benzene ring fused with a triazole molecule. The industry uses these compounds as anti-corrosion agents and recently, they have been employed in the pharmaceutical industry and in detergent formulations. Benzotriazoles persist in the environment, and water treatment plants cannot degrade them completely. Consequently, these compounds have been detected in rivers, lakes, and drinking water, which makes assessing their safety for the human and aquatic animal populations crucial. Here, we have evaluated and compared how exposure to 1H-benzotriazole or 5-chloro-benzotriazole affect the zebrafish embryo-larval stages. We have determined the acute toxicity, morphometric alterations, and acetylcholinesterase activity on zebrafish embryos, as well as behavioral endpoints using the tail coiling assay. The estimated LC50 of 5-chloro-benzotriazole was 19 mg/L, whereas 1H-benzotriazole caused no mortality. The zebrafish embryos exposed to 20 and 25 mg/L 5-chloro-benzotriazole had decreased hatching rate and exhibited pericardial and yolk sac edemas. Furthermore, the embryo length and eye area were decreased, in contrast with an increased yolk sac after exposure to 20 mg/L 5-chloro-benzotriazole. In turn, 1H-benzotriazole also decreased the eye area of zebrafish embryos, but no other significant morphological alterations were observed. The tail coiling assay showed that the zebrafish embryos increased the percentage of time moving and the number of embryonic movements per minute after exposure to 1H-benzotriazole (15 mg/L) or 5-chloro-benzotriazole (20 and 25 mg/L), indicating that these compounds were potentially neurotoxic. However, acetylcholinesterase activity was not significantly altered in embryos exposed to 1H-benzotriazole, but significantly decreased when exposed to 0.05 mg/L 5-chloro benzotriazole confirming its neurotoxicity at a much lower concentration. Our findings showed that 5-chloro-benzotriazole seems to induce more harmful alterations to zebrafish embryos than 1H-benzotriazole. Nevertheless, 1H-benzotriazole seems to induce a direct effect on eye development for concentrations lower than the ones of 5-chloro-benzotriazole affecting zebrafish embryos.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Humanos , Acetilcolinesterasa , Triazoles/toxicidad , Dosificación Letal Mediana , Embrión no Mamífero , Contaminantes Químicos del Agua/toxicidad
11.
Sci Total Environ ; 916: 170012, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38246377

RESUMEN

The search for new methods in the toxicology field has increased the use of early life stages of zebrafish (Danio rerio) as a versatile organism model. Here, we use early stages of zebrafish to evaluate glyphosate as pure active ingredient and within a commercial formulation in terms of oxidative stress. Biomarkers involved in the oxidative status were evaluated along with other markers of neurotoxicity, genotoxicity, cytotoxicity, energy balance and motor performance, and the selected tools were evaluated by its sensitivity in determining early-warning events. Zebrafish embryos exposed to glyphosate active ingredient and glyphosate-based formulation were under oxidative stress, but only the commercial formulation delayed the embryogenesis, affected the cholinergic neurotransmission and induced DNA damage. Both altered the motor performance of larvae at very low concentrations, becoming larvae hypoactive. The energy balance was also impaired, as embryos under oxidative stress had lower lipids reserves. Although data suggest that glyphosate-based formulation has higher toxicity than the active ingredient itself, the most sensitive biomarkers detected early-warning effects at very low concentrations of the active ingredient. Biochemical biomarkers of defense system and oxidative damage were the most sensitive tools, detecting pro-oxidant responses at very low concentrations, along with markers of motor performance that showed high sensitivity and high throughput, suitable for detecting early effects linked to neurotoxicity. Alterations on morphology during embryogenesis showed the lowest sensitivity, thus morphological alterations appeared after several alterations at biochemical levels. Tools evaluating DNA damage and cell proliferation showed mid-sensitivity, but low throughput, thus they could be used as complementary markers.


Asunto(s)
Glifosato , Herbicidas , Animales , Pez Cebra/fisiología , Glicina/toxicidad , Herbicidas/toxicidad , Estrés Oxidativo , Larva
12.
Chemosphere ; 350: 141072, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160947

RESUMEN

In the context of a rising global temperature, biomass burning represents an increasing risk to human health, due to emissions of highly toxic substances such as polycyclic aromatic hydrocarbon (PAHs). Size-segregated particulate matter (PM) was collected in a region within the sugarcane belt of São Paulo state (Brazil), where biomass burning is still frequent, despite the phasing out of manual harvesting preceded by fire. The median of the total concentration of the 15 PAHs determined was 2.3 ± 1.8 ng m-3 (n = 19), where 63% of this content was in PM1.0. Concentrations of OPAHs and NPAHs were about an order of magnitude lower. PM2.5 collected in the dry season, when most of the fires occur, presented PAHs and OPAHs total concentrations three times higher than in the wet season, showing positive correlations with fire foci number and levoglucosan (a biomass burning marker). These results, added to the fact that biomass burning explained 65% of the data variance (PCA analysis), evidenced the importance of this practice as a source of PAHs and OPAHs to the regional atmosphere. Conversely, NPAHs appeared to be mainly derived from diesel-powered vehicles. The B[a]P equivalent concentration was estimated to be 4 times higher in the dry season than in the wet season, and was greatly increased during a local fire event. Cytotoxicity and genotoxicity of PM1.0 organic extracts were assessed using in vitro tests with human liver HepG2 cells. For both types of tests, significant toxicity was only observed for samples collected during the dry season. Persistent DNA damage that may have impaired the DNA repair system was also observed. The results indicated that there was a health risk associated with the air particulate mixture, mainly related to biomass burning, demonstrating the urgent need for better remediation actions to prevent the occurrence of burning events.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Compuestos Policíclicos , Humanos , Material Particulado/toxicidad , Material Particulado/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Compuestos Policíclicos/análisis , Brasil , Biomasa , Biodiversidad , Monitoreo del Ambiente , Temperatura , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Compuestos Orgánicos/análisis , Estaciones del Año
13.
Chem Biol Interact ; 388: 110831, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38101597

RESUMEN

Polybrominated Diphenyl Ethers (PBDEs) are a major class of brominated flame retardants, and their widespread use has led them to be considered contaminants with emerging concern. PBDEs have been detected in the indoor air, house dust, food, and all environmental compartments. The congener BDE-47 (2,2',4,4'-tetrabromodiphenyl ether) is the most prevalent, and hepatotoxicity, neurotoxicity, immunological changes, endocrine disruption, and genotoxic potential have been related to its exposure. Although the BDE-47 molecular toxicity pathway is directly related to intrinsic apoptotic cell death, the role of autophagy in BDE-47 toxicity remains unclear. In this context, three-dimensional cell culture has emerged as a good strategy for the replacement of animals in toxicological testing. Here, we used HepaRG spheroids cultured in alginate microcapsules to investigate the role of autophagy in BDE-47-mediated hepatotoxicity. We developed mature and functional HepaRG spheroids by culturing them in alginate microcapsules. Histological analysis revealed that HepaRG spheroids formed an extracellular matrix and stored glycogen. No apoptotic and/or necrotic cores were observed. BDE-47 showed concentration- and time-dependent cytotoxicity in HepaRG spheroids. In the early exposure period, BDE-47 initially disrupted mitochondrial activity and increased the formation of acid compartments that promoted the increase in autophagic activity; however, this autophagy was blocked, and long-term exposure to BDE-47 promoted efficient apoptotic cell death through autophagy blockade, as evidenced by an increased number of fragmented/condensed nuclei. Therefore, for the first time, we demonstrated BDE-47 toxicity and its cell pathway induces cell death using a three-dimensional liver cell culture, the HepaRG cell line.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Retardadores de Llama , Animales , Éteres Difenilos Halogenados/toxicidad , Cápsulas , Autofagia , Retardadores de Llama/toxicidad
14.
Biology (Basel) ; 13(5)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38785819

RESUMEN

Understanding the interplay among organophosphorus flame retardants (OPFRs), microplastics, and freshwater organisms is crucial for unravelling the dynamics within freshwater environments and foreseeing the potential impacts of organic pollutants and plastic contamination. For that purpose, the present research assessed the exposure impact of 10 mg L-1 flame-retardant aluminium diethylphosphinate (ALPI), 10 µg mg-1liver microplastics polyurethane (PU), and the combination of ALPI and PU on the freshwater planarian Girardia tigrina. The exposure to both ALPI and PU revealed a sequential effect, i.e., a decrease in locomotor activity, while oxidative stress biomarkers (total glutathione, catalase, glutathione S-transferase, lipid peroxidation) and metabolic responses (cholinesterase activity, electron transport system, and lactate dehydrogenase) remained unaffected. Despite this fact, it was possible to observe that the range of physiological responses in exposed organisms varied, in particular in the cases of the electron transport system, cholinesterase activity, glutathione S-transferase, catalase, and levels of total glutathione and proteins, showing that the energetic costs for detoxification and antioxidant capacity might be causing a lesser amount of energy allocated for the planarian activity. By examining the physiological, behavioural, and ecological responses of planarians to these pollutants, insights can be gained into broader ecosystem-level effects and inform strategies for mitigating environmental risks associated with OPFRs and microplastic pollution in freshwater environments.

15.
Toxics ; 11(9)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37755743

RESUMEN

BDE-47, a flame retardant that is frequently detected in environmental compartments and human tissues, has been associated with various toxic effects. In turn, information about the effects of aluminum diethyl-phosphinate (ALPI), a halogen-free flame retardant from a newer generation, is limited. This study aims to assess and compare the toxicity of BDE-47 and ALPI to zebrafish by analyzing the tail coiling, locomotor, acetylcholinesterase activities, and oxidative stress biomarkers. At 3000 µg/L BDE-47, the coiling frequency increased at 26-27 h post-fertilization (hpf), but the burst activity (%) and mean burst duration (s) did not change significantly. Here, we considered that the increased coiling frequency is a slight neurotoxic effect because locomotor activity was impaired at 144 hpf and 300 µg/L BDE-47. Moreover, we hypothesized that oxidative stress could be involved in the BDE-47 toxicity mechanisms. In contrast, only at 30,000 µg/L did ALPI increase the catalase activity, while the motor behavior during different developmental stages remained unaffected. On the basis of these findings, BDE-47 is more toxic than ALPI.

16.
Chemosphere ; 340: 139894, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37607599

RESUMEN

Tebuthiuron (TBU), a phenylurea herbicide, is widely applied in agricultural and non-agricultural soils. Because TBU resists degradation, it can contaminate water and reach the biota once it is released into the environment. However, the potential toxic effects of TBU on aquatic developing organisms have been poorly studied. By taking advantage of the early-life stages of zebrafish (Danio rerio), we have combined morphological, biochemical, behavioural, and molecular approaches to investigate the developmental toxicity triggered by environmentally relevant concentrations (from 0.1 to 1000 µg/L) of TBU. Exposure to TBU did not elicit morphological abnormalities but it significantly delayed hatching. In addition, TBU altered the frequency of tail coils in one-day post-fertilization (dpf) old embryos. Moreover, TBU exposure during four days significantly inhibited the whole body AChE activity of larvae. At the molecular level, TBU did not significantly affect the mRNA levels of four genes (elavl3, gfap, gap43, and shha) that play key roles during the neurodevelopment of zebrafish. By assessing the motor responses to repeated light-dark stimuli, 6 dpf larvae exposed to TBU displayed hyperactivity, showing greater travelling distance during the dark periods. Our categorization of swimming speed revealed an interesting finding - after the light was turned off, the exposed larvae abandoned the freezing mode (<2 mm/s) and travelled mainly at cruising speed (2-20 mm/s), showing that the larval hyperactivity did not translate into higher swimming velocity. Overall, our results offer new insights into the TBU toxicity to developing organisms, namely effects in AChE activity and hyperactivity, providing support data for future studies considering environmental risk assessment of this herbicide.


Asunto(s)
Herbicidas , Pez Cebra , Animales , Agricultura , Biota , Herbicidas/toxicidad , Larva
17.
Toxicol Rep ; 10: 32-39, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36578673

RESUMEN

Diazinon (DZN) is an insecticide extensively used to control pests in crops and animals. However, its indicriminated use may lead to liver damage in animals and humans. This study aimed to evaluate the toxicity of DZN (25-150 µM) on human hepatoblastoma (HepG2) cells after 24 and 48 h of exposure and the role of its biotransformation on the toxicological potential. We also tested the protective effect of tetrahydrocurcumin (THC), an antioxidant agent, in the DZN-induced citotoxicity. DZN caused cytotoxicity in the HepG2 cells, inhibiting cell proliferation and reducing cell viability in a dose- and time-dependent manner. The pre-incubation of HepG2 cells with chemical inducers of cytochrome P450 monooxygenase 3-methylcholanthrene and phenobarbital resulted in a further decrease of cell viability associated with DZN exposure. In addition, the metabolite diazoxon was more toxic than DZN. Our results also revealed that THC alleviated DZN-induced cytotoxicity and reactive oxygen and nitrogen species (RONS) generation in HepG2 cells. In conclusion, our data provide novel insights into the involvement of biotransformation in the mechanisms of DZN-induced cytotoxicity and suggest that amelioration of RONS accumulation might be involved in the protective effect of THC on DZN-induced liver injury.

18.
J Bioenerg Biomembr ; 43(3): 237-46, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21611778

RESUMEN

In addition to adenosine triphosphate (ATP) production, mitochondria have been implicated in the regulation of several physiological responses in plants, such as programmed cell death (PCD) activation. Salicylic acid (SA) and reactive oxygen species (ROS) are essential signaling molecules involved in such physiological responses; however, the mechanisms by which they act remain unknown. In non-photosynthesizing tissues, mitochondria appear to serve as the main source of ROS generation. Evidence suggests that SA and ROS could regulate plant PCD through a synergistic mechanism that involves mitochondria. Herein, we isolate and characterize the mitochondria from non-photosynthesizing cell suspension cultures of Rubus fruticosus. Furthermore, we assess the primary site of ROS generation and the effects of SA on isolated organelles. Mitochondrial Complex III was found to be the major source of ROS generation in this model. In addition, we discovered that SA inhibits the electron transport chain by inactivating the semiquinone radical during the Q cycle. Computational analyses confirmed the experimental data, and a mechanism for this action is proposed.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Rosaceae/metabolismo , Ácido Salicílico/farmacología , Mitocondrias/efectos de los fármacos , Oxidación-Reducción , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rosaceae/química , Ácido Salicílico/metabolismo
19.
Methods Mol Biol ; 2240: 197-206, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33423235

RESUMEN

3D Cell culture is an alternative to animal use in many drug development and toxicity studies. The 3D cell culture can mimic and reproduce the original tissue microenvironment, morphology, and mechanical and physiological characteristics, to provide a more realistic and reliable response as compared to two-dimensional cultures. 3D cell culture encapsulated in alginate beads is a very simple and relatively inexpensive tool that is easy to handle and to maintain. The alginate beads function as a scaffold that imprisons cells and allows 3D cell growth, to generate spheroids that can have greater genic expression and cell-cell communication as a nano or microtissue. The HepG2 cell line is a human hepatocellular carcinoma cell derivative. HepG2 cells preserve several of the characteristics of hepatocytes and are therefore often used in toxicity studies. Here, we describe HepG2 cell encapsulation in alginate beads and analyze the resulting spheroids formed within the alginate beads by immunocytochemistry, by staining a certain structure with a specific antibody coupled with a fluorophore. This method preserves the beads and enables cell analysis by confocal microscopy.


Asunto(s)
Alginatos/química , Técnicas de Cultivo de Célula , Técnica del Anticuerpo Fluorescente , Hepatocitos/efectos de los fármacos , Microscopía Confocal , Pruebas de Toxicidad , Biomarcadores/metabolismo , Células Hep G2 , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Esferoides Celulares
20.
Methods Mol Biol ; 2240: 243-261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33423238

RESUMEN

Chemical compounds induce cytotoxicity by various mechanisms, including interference in membrane integrity, metabolism, cellular component degradation or release, and cell division. Between the classic death pathways, namely, autophagy, apoptosis, and necrosis, apoptosis have been in the focus for the last several years as an important pathway for the toxicity of different types of xenobiotics. Because of that, having the tools to evaluate it is key for understanding and explaining the toxicodynamics of different classes of substances. Here, we describe a wide array of classic assays that can be easily implemented to evaluate apoptosis induction.


Asunto(s)
Apoptosis/efectos de los fármacos , Bioensayo , Mitocondrias/efectos de los fármacos , Pruebas de Toxicidad , Animales , Anexina A5/metabolismo , Biomarcadores/metabolismo , Western Blotting , Ciclo Celular/efectos de los fármacos , Células Cultivadas , Fragmentación del ADN , Citometría de Flujo , Humanos , Microscopía Fluorescente , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda