Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Neurosci ; 35(42): 14286-306, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26490867

RESUMEN

Misfolded proteins accumulate and aggregate in neurodegenerative disease. The existence of these deposits reflects a derangement in the protein homeostasis machinery. Using a candidate gene screen, we report that loss of RAD-23 protects against the toxicity of proteins known to aggregate in amyotrophic lateral sclerosis. Loss of RAD-23 suppresses the locomotor deficit of Caenorhabditis elegans engineered to express mutTDP-43 or mutSOD1 and also protects against aging and proteotoxic insults. Knockdown of RAD-23 is further neuroprotective against the toxicity of SOD1 and TDP-43 expression in mammalian neurons. Biochemical investigation indicates that RAD-23 modifies mutTDP-43 and mutSOD1 abundance, solubility, and turnover in association with altering the ubiquitination status of these substrates. In human amyotrophic lateral sclerosis spinal cord, we find that RAD-23 abundance is increased and RAD-23 is mislocalized within motor neurons. We propose a novel pathophysiological function for RAD-23 in the stabilization of mutated proteins that cause neurodegeneration. SIGNIFICANCE STATEMENT: In this work, we identify RAD-23, a component of the protein homeostasis network and nucleotide excision repair pathway, as a modifier of the toxicity of two disease-causing, misfolding-prone proteins, SOD1 and TDP-43. Reducing the abundance of RAD-23 accelerates the degradation of mutant SOD1 and TDP-43 and reduces the cellular content of the toxic species. The existence of endogenous proteins that act as "anti-chaperones" uncovers new and general targets for therapeutic intervention.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Enfermedad de la Neurona Motora/genética , Mutación/genética , Interferencia de ARN/fisiología , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Genotipo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Masculino , Ratones , Actividad Motora/genética , Fotoblanqueo , Ratas , Ratas Sprague-Dawley
2.
J Biol Chem ; 287(6): 4348-59, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22179603

RESUMEN

N-methyl-D-aspartate receptors (NMDARs), critical mediators of both physiologic and pathologic neurological signaling, have previously been shown to be sensitive to mechanical stretch through the loss of its native Mg(2+) block. However, the regulation of this mechanosensitivity has yet to be further explored. Furthermore, as it has become apparent that NMDAR-mediated signaling is dependent on specific NMDAR subtypes, as governed by the identity of the NR2 subunit, a crucial unanswered question is the role of subunit composition in observed NMDAR mechanosensitivity. Here, we used a recombinant system to assess the mechanosensitivity of specific subtypes and demonstrate that the mechanosensitive property is uniquely governed by the NR2B subunit. NR1/NR2B NMDARs displayed significant stretch sensitivity, whereas NR1/NR2A NMDARs did not respond to stretch. Furthermore, NR2B mechanosensitivity was regulated by PKC activity, because PKC inhibition reduced stretch responses in transfected HEK 293 cells and primary cortical neurons. Finally, using NR2B point mutations, we identified a PKC phosphorylation site, Ser-1323 on NR2B, as a unique critical regulator of stretch sensitivity. These data suggest that the selective mechanosensitivity of NR2B can significantly impact neuronal response to traumatic brain injury and illustrate that the mechanical tone of the neuron can be dynamically regulated by PKC activity.


Asunto(s)
Lesiones Encefálicas/metabolismo , Mecanotransducción Celular , Neuronas/metabolismo , Proteína Quinasa C/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Células HEK293 , Humanos , Neuronas/patología , Mutación Puntual , Proteína Quinasa C/genética , Ratas , Receptores de N-Metil-D-Aspartato/genética , Transfección
3.
Proc Natl Acad Sci U S A ; 107(38): 16661-6, 2010 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-20817852

RESUMEN

In association with NMDA receptors (NMDARs), neuronal α7 nicotinic ACh receptors (nAChRs) have been implicated in neuronal plasticity as well as neurodevelopmental, neurological, and psychiatric disorders. However, the role of presynaptic NMDARs and their interaction with α7 nAChRs in these physiological and pathophysiological events remains unknown. Here we report that axonal α7 nAChRs modulate presynaptic NMDAR expression and structural plasticity of glutamatergic presynaptic boutons during early synaptic development. Chronic inactivation of α7 nAChRs markedly increased cell surface NMDAR expression as well as the number and size of glutamatergic axonal varicosities in cortical cultures. These boutons contained presynaptic NMDARs and α7 nAChRs, and recordings from outside-out pulled patches of enlarged presynaptic boutons identified functional NMDAR-mediated currents. Multiphoton imaging of presynaptic NMDAR-mediated calcium transients demonstrated significantly larger responses in these enlarged boutons, suggesting enhanced presynaptic NMDAR function that could lead to increased glutamate release. Moreover, whole-cell patch clamp showed a significant increase in synaptic charge mediated by NMDAR miniature EPSCs but no alteration in the frequency of AMPAR miniature EPSCs, suggesting the selective enhancement of postsynaptically silent synapses upon inactivation of α7 nAChRs. Taken together, these findings indicate that axonal α7 nAChRs modulate presynaptic NMDAR expression and presynaptic and postsynaptic maturation of glutamatergic synapses, and implicate presynaptic α7 nAChR/NMDAR interactions in synaptic development and plasticity.


Asunto(s)
Plasticidad Neuronal/fisiología , Terminales Presinápticos/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Receptores Nicotínicos/fisiología , Animales , Axones/fisiología , Señalización del Calcio , Células Cultivadas , Potenciales Postsinápticos Excitadores , Potenciales Postsinápticos Miniatura , Neuronas/fisiología , Técnicas de Placa-Clamp , Ratas , Receptor Nicotínico de Acetilcolina alfa 7
4.
J Neurochem ; 118(6): 1113-23, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21749375

RESUMEN

Excitotoxic neuronal damage via over-activation of the NMDA receptor has been implicated in many neurodegenerative diseases. In vitro modeling of excitotoxic injury has shown that activation of G-protein coupled receptors (GPCRs) counteracts such injury through modulation of neuronal pro-survival pathways and/or NMDA receptor signaling. We have previously demonstrated that the GPCR APJ and its endogenous neuropeptide ligand apelin can protect neurons against excitotoxicity, but the mechanism(s) of this neuroprotection remain incompletely understood. We hypothesized that apelin can promote neuronal survival by activating pro-survival signaling as well as inhibiting NMDA receptor-mediated excitotoxic signaling cascades. Our results demonstrate that (i) apelin activates pro-survival signaling via inositol trisphosphate (IP(3) ), protein kinase C (PKC), mitogen-activated protein kinase kinase 1/2 (MEK1/2), and extracellular signal-regulated kinase-1/2 (ERK1/2) to protect against excitotoxicity, and (ii) apelin inhibits excitotoxic signaling by attenuating NMDA receptor and calpain activity, and by modulating NMDA receptor subunit NR2B phosphorylation at serine 1480. These studies delineate a novel apelinergic signaling pathway that concurrently promotes survival and limits NMDA receptor-mediated injury to protect neurons against excitotoxicity. Defining apelin-mediated neuroprotection advances our understanding of neuroprotective pathways and will potentially improve our ability to develop therapeutics for excitotoxicity-associated neurodegenerative disorders.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/farmacología , Fármacos Neuroprotectores , Neurotoxinas/toxicidad , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Animales , Apelina , Western Blotting , Encéfalo/citología , Calcio/metabolismo , Calpaína/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fenómenos Electrofisiológicos , Infecciones por VIH/patología , Humanos , Canales Iónicos/efectos de los fármacos , Canales Iónicos/fisiología , Macrófagos/efectos de los fármacos , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Fosforilación , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección
5.
Free Radic Biol Med ; 131: 197-208, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30529384

RESUMEN

Inadequate delivery of oxygen to organisms during development can lead to cell dysfunction/death and life-long disabilities. Although the susceptibility of developing cells to low oxygen conditions changes with maturation, the cellular and molecular pathways that govern responses to low oxygen are incompletely understood. Here we show that developing Caenorhabditis elegans are substantially more sensitive to anoxia than adult animals and that this sensitivity is controlled by nervous system generated hormones (e.g., neuropeptides). A screen of neuropeptide genes identified and validated nlp-40 and its receptor aex-2 as a key regulator of anoxic survival in developing worms. The survival-promoting action of impaired neuropeptide signaling does not rely on five known stress resistance pathways and is specific to anoxic insult. Together, these data highlight a novel cell non-autonomous pathway that regulates the susceptibility of developing organisms to anoxia.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Hipoxia/genética , Longevidad/genética , Neuropéptidos/genética , Receptores Acoplados a Proteínas G/genética , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Perfilación de la Expresión Génica , Hipoxia/metabolismo , Neuropéptidos/metabolismo , Oxígeno/metabolismo , Proproteína Convertasa 2/genética , Proproteína Convertasa 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
7.
Sci Rep ; 7(1): 13150, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29030576

RESUMEN

Dysfunction and death of motor neurons leads to progressive paralysis in amyotrophic lateral sclerosis (ALS). Recent studies have reported organism-level metabolic dysfunction as a prominent but poorly understood feature of the disease. ALS patients are hypermetabolic with increased resting energy expenditure, but if and how hypermetabolism contributes to disease pathology is unknown. We asked if decreasing metabolism in the mutant superoxide dismutase 1 (SOD1) mouse model of ALS (G93A SOD1) would alter motor function and survival. To address this, we generated mice with the G93A SOD1 mutation that also lacked the melanocortin-4 receptor (MC4R). MC4R is a critical regulator of energy homeostasis and food intake in the hypothalamus. Loss of MC4R is known to induce hyperphagia and hypometabolism in mice. In the MC4R null background, G93A SOD1 mice become markedly hypometabolic, overweight and less active. Decreased metabolic rate, however, did not reverse any ALS-related disease phenotypes such as motor dysfunction or decreased lifespan. While hypermetabolism remains an intriguing target for intervention in ALS patients and disease models, our data indicate that the melanocortin system is not a good target for manipulation. Investigating other pathways may reveal optimal targets for addressing metabolic dysfunction in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Receptor de Melanocortina Tipo 4/deficiencia , Superóxido Dismutasa-1/genética , Animales , Dióxido de Carbono/metabolismo , Modelos Animales de Enfermedad , Femenino , Genotipo , Masculino , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Mutación/genética , Consumo de Oxígeno/genética , Consumo de Oxígeno/fisiología , Receptor de Melanocortina Tipo 4/genética
8.
Nat Neurosci ; 20(11): 1560-1568, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28920936

RESUMEN

Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/biosíntesis , Neuronas Dopaminérgicas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Sustancia Negra/metabolismo , alfa-Sinucleína/biosíntesis , Animales , Caenorhabditis elegans , Células Cultivadas , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Femenino , Humanos , Levodopa/farmacología , Levodopa/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología
9.
Front Biosci (Schol Ed) ; 1(2): 466-76, 2009 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-19482714

RESUMEN

Calpain is a ubiquitous protease found in different tissue types and in many organisms including mammals. It generally does not destroy its large variety of substrates, but more commonly disrupts their function. In neurons, many of its substrates become dysregulated as a result of cleavage of their regulatory domain by this protease, leading to altered signaling between cells. In glutamatergic synaptic transmission, direct targets of calpain include all of the major glutamate receptors: NMDA receptors, AMPA receptors and mGluR. By cleaving these receptors and associated intracellular proteins, calpain may regulate the physiology at glutamatergic synapses. As a result, calpain-mediated cleavage in neurons might not only be involved in pathological events like excitotoxicity, but may also have neuroprotective effects and roles in physiological synaptic transmission.


Asunto(s)
Calpaína/fisiología , Receptores de Glutamato/fisiología , Animales , Humanos , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda