Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
PLoS Pathog ; 12(12): e1006058, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27936158

RESUMEN

Measles virus (MeV) and all Paramyxoviridae members rely on a complex polymerase machinery to ensure viral transcription and replication. Their polymerase associates the phosphoprotein (P) and the L protein that is endowed with all necessary enzymatic activities. To be processive, the polymerase uses as template a nucleocapsid made of genomic RNA entirely wrapped into a continuous oligomer of the nucleoprotein (N). The polymerase enters the nucleocapsid at the 3'end of the genome where are located the promoters for transcription and replication. Transcription of the six genes occurs sequentially. This implies ending and re-initiating mRNA synthesis at each intergenic region (IGR). We explored here to which extent the binding of the X domain of P (XD) to the C-terminal region of the N protein (NTAIL) is involved in maintaining the P/L complex anchored to the nucleocapsid template during the sequential transcription. Amino acid substitutions introduced in the XD-binding site on NTAIL resulted in a wide range of binding affinities as determined by combining protein complementation assays in E. coli and human cells and isothermal titration calorimetry. Molecular dynamics simulations revealed that XD binding to NTAIL involves a complex network of hydrogen bonds, the disruption of which by two individual amino acid substitutions markedly reduced the binding affinity. Using a newly designed, highly sensitive dual-luciferase reporter minigenome assay, the efficiency of re-initiation through the five measles virus IGRs was found to correlate with NTAIL/XD KD. Correlatively, P transcript accumulation rate and F/N transcript ratios from recombinant viruses expressing N variants were also found to correlate with the NTAIL to XD binding strength. Altogether, our data support a key role for XD binding to NTAIL in maintaining proper anchor of the P/L complex thereby ensuring transcription re-initiation at each intergenic region.


Asunto(s)
Sarampión/virología , Nucleoproteínas/metabolismo , Proteínas Virales/metabolismo , Replicación Viral/fisiología , Calorimetría , Dicroismo Circular , ADN Intergénico , Humanos , Espectrometría de Masas , Sarampión/metabolismo , Virus del Sarampión/química , Virus del Sarampión/metabolismo , Modelos Moleculares , Proteínas de la Nucleocápside , Nucleoproteínas/química , Unión Proteica , Transcripción Genética , Proteínas Virales/química
2.
J Virol ; 88(18): 10851-63, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25008930

RESUMEN

UNLABELLED: The genome of nonsegmented negative-strand RNA viruses is tightly embedded within a nucleocapsid made of a nucleoprotein (N) homopolymer. To ensure processive RNA synthesis, the viral polymerase L in complex with its cofactor phosphoprotein (P) binds the nucleocapsid that constitutes the functional template. Measles virus P and N interact through two binding sites. While binding of the P amino terminus with the core of N (NCORE) prevents illegitimate encapsidation of cellular RNA, the interaction between their C-terminal domains, P(XD) and N(TAIL) is required for viral RNA synthesis. To investigate the binding dynamics between the two latter domains, the P(XD) F497 residue that makes multiple hydrophobic intramolecular interactions was mutated. Using a quantitative mammalian protein complementation assay and recombinant viruses, we found that an increase in P(XD)-to-N(TAIL) binding strength is associated with a slower transcript accumulation rate and that abolishing the interaction renders the polymerase nonfunctional. The use of a newly developed system allowing conditional expression of wild-type or mutated P genes, revealed that the loss of the P(XD)-N(TAIL) interaction results in reduced transcription by preformed transcriptases, suggesting reduced engagement on the genomic template. These intracellular data indicate that the viral polymerase entry into and progression along its genomic template relies on a protein-protein interaction that serves as a tightly controlled dynamic anchor. IMPORTANCE: Mononegavirales have a unique machinery to replicate RNA. Processivity of their polymerase is only achieved when the genome template is entirely embedded into a helical homopolymer of nucleoproteins that constitutes the nucleocapsid. The polymerase binds to the nucleocapsid template through the phosphoprotein. How the polymerase complex enters and travels along the nucleocapsid template to ensure uninterrupted synthesis of up to ∼ 6,700-nucleotide messenger RNAs from six to ten consecutive genes is unknown. Using a quantitative protein complementation assay and a biGene-biSilencing system allowing conditional expression of two P genes copies, the role of the P-to-N interaction in polymerase function was further characterized. We report here a dynamic protein anchoring mechanism that differs from all other known polymerases that rely only onto a sustained and direct binding to their nucleic acid template.


Asunto(s)
Virus del Sarampión/fisiología , Sarampión/virología , Nucleocápside/metabolismo , Fosfoproteínas/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Regulación Viral de la Expresión Génica , Humanos , Virus del Sarampión/química , Virus del Sarampión/genética , Nucleocápside/química , Nucleocápside/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Virales/química , Proteínas Virales/genética
3.
Adv Exp Med Biol ; 870: 351-81, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26387109

RESUMEN

In this review we summarize available data showing the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. We provide a detailed description of the molecular mechanisms that govern the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (XD) of the homologous P proteins. We also show that a significant flexibility persists within NTAIL-XD complexes, which therefore provide illustrative examples of "fuzziness". The functional implications of structural disorder for viral transcription and replication are discussed in light of the ability of disordered regions to establish a complex molecular partnership and to confer a considerable reach to the elements of the replicative machinery.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Paramyxoviridae/química , Paramyxoviridae/fisiología , Proteínas Virales/química , Replicación Viral , Conformación Proteica
4.
Nat Nanotechnol ; 16(2): 181-189, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33230318

RESUMEN

Intrinsically disordered proteins (IDPs) are ubiquitous proteins that are disordered entirely or partly and play important roles in diverse biological phenomena. Their structure dynamically samples a multitude of conformational states, thus rendering their structural analysis very difficult. Here we explore the potential of high-speed atomic force microscopy (HS-AFM) for characterizing the structure and dynamics of IDPs. Successive HS-AFM images of an IDP molecule can not only identify constantly folded and constantly disordered regions in the molecule, but can also document disorder-to-order transitions. Moreover, the number of amino acids contained in these disordered regions can be roughly estimated, enabling a semiquantitative, realistic description of the dynamic structure of IDPs.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Microscopía de Fuerza Atómica , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Imagen Molecular , Mutación , Conformación Proteica , Pliegue de Proteína , Relación Estructura-Actividad Cuantitativa
5.
FEBS J ; 283(4): 576-94, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26684000

RESUMEN

Despite the partial disorder-to-order transition that intrinsically disordered proteins often undergo upon binding to their partners, a considerable amount of residual disorder may be retained in the bound form, resulting in a fuzzy complex. Fuzzy regions flanking molecular recognition elements may enable partner fishing through non-specific, transient contacts, thereby facilitating binding, but may also disfavor binding through various mechanisms. So far, few computational or experimental studies have addressed the effect of fuzzy appendages on partner recognition by intrinsically disordered proteins. In order to shed light onto this issue, we used the interaction between the intrinsically disordered C-terminal domain of the measles virus (MeV) nucleoprotein (NTAIL ) and the X domain (XD) of the viral phosphoprotein as model system. After binding to XD, the N-terminal region of NTAIL remains conspicuously disordered, with α-helical folding taking place only within a short molecular recognition element. To study the effect of the N-terminal fuzzy region on NTAIL /XD binding, we generated N-terminal truncation variants of NTAIL , and assessed their binding abilities towards XD. The results revealed that binding increases with shortening of the N-terminal fuzzy region, with this also being observed with hsp70 (another MeV NTAIL binding partner), and for the homologous NTAIL /XD pairs from the Nipah and Hendra viruses. Finally, similar results were obtained when the MeV NTAIL fuzzy region was replaced with a highly dissimilar artificial disordered sequence, supporting a sequence-independent inhibitory effect of the fuzzy region.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Virus del Sarampión/química , Nucleoproteínas/química , Fosfoproteínas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica
6.
ACS Chem Biol ; 10(3): 795-802, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25511246

RESUMEN

In the past decade, a wealth of experimental data has demonstrated that a large fraction of proteins, while functional, are intrinsically disordered at physiological conditions. Many intrinsically disordered proteins (IDPs) undergo a disorder-to-order transition upon binding to their biological targets, a phenomenon known as induced folding. Induced folding may occur through two extreme mechanisms, namely conformational selection and folding after binding. Although the pre-existence of ordered structures in IDPs is a prerequisite for conformational selection, it does not necessarily commit to this latter mechanism, and kinetic studies are needed to discriminate between the two possible scenarios. So far, relatively few studies have addressed this issue from an experimental perspective. Here, we analyze the interaction kinetics between the intrinsically disordered C-terminal domain of the measles virus nucleoprotein (NTAIL) and the X domain (XD) of the viral phosphoprotein. Data reveal that NTAIL recognizes XD by first forming a weak encounter complex in a disordered conformation, which is subsequently locked-in by a folding step; i.e., binding precedes folding. The implications of our kinetic results, in the context of previously reported equilibrium data, are discussed. These results contribute to enhancing our understanding of the molecular mechanisms by which IDPs recognize their partners and represent a paradigmatic example of the need of kinetic methods to discriminate between reaction mechanisms.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Virus del Sarampión/química , Nucleoproteínas/química , Fosfoproteínas/química , Proteínas Virales/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Proteínas Intrínsecamente Desordenadas/genética , Cinética , Modelos Moleculares , Proteínas de la Nucleocápside , Nucleoproteínas/genética , Fosfoproteínas/genética , Unión Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Termodinámica , Proteínas Virales/genética
7.
J Mol Biol ; 425(18): 3495-509, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-23811056

RESUMEN

In view of getting insights into the molecular determinants of the binding efficiency of intrinsically disordered proteins (IDPs), we used random mutagenesis. As a proof of concept, we chose the interaction between the intrinsically disordered C-terminal domain of the measles virus nucleoprotein (NTAIL) and the X domain (XD) of the viral phosphoprotein and assessed how amino acid substitutions introduced at random within NTAIL affect partner recognition. In contrast with directed evolution approaches, we did not apply any selection and used the gene library approach not for production purposes but for achieving a better understanding of the NTAIL/XD interaction. For that reason, and to differentiate our approach from similar approaches that make use of systematic (i.e., targeted) mutagenesis, we propose to call it "descriptive random mutagenesis" (DRM). NTAIL variants generated by error-prone PCR were picked at random in the absence of selection pressure and were characterized in terms of sequence and binding abilities toward XD. DRM not only identified determinants of NTAIL/XD interaction that were in good agreement with previous work but also provided new insights. In particular, we discovered that the primary interaction site is poorly evolvable in terms of binding abilities toward XD. We also identified a critical NTAIL residue whose role in stabilizing the NTAIL/XD complex had previously escaped detection, and we identified NTAIL regulatory sites that dampen the interaction while being located outside the primary interaction site. Results show that DRM is a valuable approach to study binding abilities of IDPs.


Asunto(s)
Mutagénesis/fisiología , Pliegue de Proteína , Mapeo de Interacción de Proteínas/métodos , Secuencia de Aminoácidos , Sustitución de Aminoácidos/fisiología , Fluorescencia , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/fisiología , Biblioteca de Péptidos , Unión Proteica , Estabilidad Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
8.
PLoS One ; 8(3): e58578, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23505537

RESUMEN

Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na(+) and K(+) concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.


Asunto(s)
Muerte Celular/fisiología , Canales Iónicos/metabolismo , Lactalbúmina/metabolismo , Ácidos Oléicos/metabolismo , Transporte Biológico , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Análisis por Conglomerados , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata , Espacio Intracelular/metabolismo , Canales Iónicos/antagonistas & inhibidores , Lactalbúmina/inmunología , Ácidos Oléicos/inmunología , Fosforilación , Potasio/metabolismo , Transducción de Señal , Sodio/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda