Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Plant Cell Rep ; 41(6): 1375-1388, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35333960

RESUMEN

KEY MESSAGE: miR394 regulates Arabidopsis flowering time in a LCR-independent manner. Arabidopsis plants harboring mutations in theMIR394 genes exhibit early flowering, lower expression of floral repressor FLC and higher expression of floral integrators FT and SOC1. Plant development occurs throughout its entire life cycle and involves a phase transition between vegetative and reproductive phases, leading to the flowering process, fruit formation and ultimately seed production. It has been shown that the microRNA394 (miR394) regulates the accumulation of the transcript coding for LEAF CURLING RESPONSIVENESS, a member of a family of F-Box proteins. The miR394 pathway regulates several processes including leaf morphology and development of the shoot apical meristem during embryogenesis, as well as having been assigned a role in the response to biotic and abiotic stress in Arabidopsis thaliana and other species. Here, we characterized plants harboring mutations in MIR394 precursor genes and demonstrate that mir394a mir394b double mutants display an early flowering phenotype which correlates with a lower expression of FLOWERING LOCUS C earlier in development and higher expression of the floral integrators FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1. Consequently, mutant plants produce fewer branches and exhibit lower seed production. Our work reveals previously unknown developmental aspects regulated by the miR394 pathway, in an LCR-independent manner, contributing to the characterization of the multiple roles of this versatile plant regulatory miRNA.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Meristema/genética , Meristema/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Plantas/genética
2.
PLoS Genet ; 10(12): e1004826, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25503246

RESUMEN

Maize leafbladeless1 (lbl1) encodes a key component in the trans-acting short-interfering RNA (ta-siRNA) biogenesis pathway. Correlated with a great diversity in ta-siRNAs and the targets they regulate, the phenotypes conditioned by mutants perturbing this small RNA pathway vary extensively across species. Mutations in lbl1 result in severe developmental defects, giving rise to plants with radial, abaxialized leaves. To investigate the basis for this phenotype, we compared the small RNA content between wild-type and lbl1 seedling apices. We show that LBL1 affects the accumulation of small RNAs in all major classes, and reveal unexpected crosstalk between ta-siRNA biogenesis and other small RNA pathways regulating transposons. Interestingly, in contrast to data from other plant species, we found no evidence for the existence of phased siRNAs generated via the one-hit model. Our analysis identified nine TAS loci, all belonging to the conserved TAS3 family. Information from RNA deep sequencing and PARE analyses identified the tasiR-ARFs as the major functional ta-siRNAs in the maize vegetative apex where they regulate expression of AUXIN RESPONSE FACTOR3 (ARF3) homologs. Plants expressing a tasiR-ARF insensitive arf3a transgene recapitulate the phenotype of lbl1, providing direct evidence that deregulation of ARF3 transcription factors underlies the developmental defects of maize ta-siRNA biogenesis mutants. The phenotypes of Arabidopsis and Medicago ta-siRNA mutants, while strikingly different, likewise result from misexpression of the tasiR-ARF target ARF3. Our data indicate that diversity in TAS pathways and their targets cannot fully account for the phenotypic differences conditioned by ta-siRNA biogenesis mutants across plant species. Instead, we propose that divergence in the gene networks downstream of the ARF3 transcription factors or the spatiotemporal pattern during leaf development in which these proteins act constitute key factors underlying the distinct contributions of the ta-siRNA pathway to development in maize, Arabidopsis, and possibly other plant species as well.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta/genética , Proteínas de Plantas/genética , ARN Interferente Pequeño/genética , Zea mays/genética , Arabidopsis/genética , Sitios Genéticos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Ácidos Indolacéticos/metabolismo , Mutación , Fenotipo , Hojas de la Planta , Proteínas de Plantas/metabolismo , ARN Interferente Pequeño/metabolismo , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transgenes
3.
Plant Physiol Biochem ; 44(5-6): 301-7, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16889972

RESUMEN

Fruit softening is associated with cell wall disassembly mediated by the action of a complex set of enzymes and proteins. Expansins, a group of proteins with unknown enzymatic activity, are proposed to be involved in this process. In order to study the involvement of expansins in strawberry fruit softening we have analyzed the expression level of five expansin mRNAs (FaEXP1, FaEXP2, FaEXP4, FaEXP5 and FaEXP6) in the cultivars "Selva", "Camarosa" and "Toyonaka", which differ in fruit firmness during ripening. We have found a correlation between mRNA expression levels and fruit firmness for FaEXP1, FaEXP2 and FaEXP5. For these three mRNAs we have observed higher expression levels in the softest cultivar (Toyonaka) than in the other two firmer cultivars (Selva and Camarosa) at the beginning of ripening. This correlation was not found in the case of FaEXP4 and FaEXP6, although both genes displayed a different expression pattern in the three cultivars analyzed. Western-blot analysis revealed that the accumulation of expansin proteins begins earlier in the softest cultivar during ripening.


Asunto(s)
Pared Celular/metabolismo , Fragaria/fisiología , Frutas/fisiología , Proteínas de Plantas/biosíntesis , Fragaria/crecimiento & desarrollo , Fragaria/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Proteínas de Plantas/genética , ARN Mensajero/biosíntesis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda