Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Angew Chem Int Ed Engl ; 60(14): 7593-7596, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33340209

RESUMEN

Recent work has shown that chemical release during the fundamental cellular process of exocytosis in model cell lines is not all-or-none. We tested this theory for vesicular release from single pancreatic beta cells. The vesicles in these cells release insulin, but also serotonin, which is detectible with amperometric methods. Traditionally, it is assumed that exocytosis in beta cells is all-or-none. Here, we use a multidisciplinary approach involving nanoscale amperometric chemical methods to explore the chemical nature of insulin exocytosis. We amperometrically quantified the number of serotonin molecules stored inside of individual nanoscale vesicles (39 317±1611) in the cell cytoplasm before exocytosis and the number of serotonin molecules released from single cells (13 310±1127) for each stimulated exocytosis event. Thus, beta cells release only one-third of their granule content, clearly supporting partial release in this system. We discuss these observations in the context of type-2 diabetes.


Asunto(s)
Exocitosis/fisiología , Células Secretoras de Insulina/metabolismo , Insulina/análisis , Serotonina/química , Animales , Glucemia/metabolismo , Citoplasma/metabolismo , Citoplasma/ultraestructura , Diabetes Mellitus Tipo 2/metabolismo , Técnicas Electroquímicas , Humanos , Ratones
2.
J Physiol ; 598(21): 4765-4780, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32716554

RESUMEN

By secreting insulin and glucagon, the ß- and α-cells of the pancreatic islets play a central role in the regulation of systemic metabolism. Both cells are equipped with ATP-regulated potassium (KATP ) channels that are regulated by the intracellular ATP/ADP ratio. In ß-cells, KATP channels are active at low (non-insulin-releasing) glucose concentrations. An increase in glucose leads to KATP channel closure, membrane depolarization and electrical activity that culminates in elevation of [Ca2+ ]i and initiation of exocytosis of the insulin-containing secretory granules. The α-cells are also equipped with KATP channels but they are under strong tonic inhibition at low glucose, explaining why α-cells are electrically active under hypoglycaemic conditions and generate large Na+ - and Ca2+ -dependent action potentials. Closure of residual KATP channel activity leads to membrane depolarization and an increase in action potential firing but this stimulation of electrical activity is associated with inhibition rather than acceleration of glucagon secretion. This paradox arises because membrane depolarization reduces the amplitude of the action potentials by voltage-dependent inactivation of the Na+ channels involved in action potential generation. Exocytosis in α-cells is tightly linked to the opening of voltage-gated P/Q-type Ca2+ channels, the activation of which is steeply voltage-dependent. Accordingly, the inhibitory effect of the reduced action potential amplitude exceeds the stimulatory effect resulting from the increased action potential frequency. These observations highlight a previously unrecognised role of the action potential amplitude as a key regulator of pancreatic islet hormone secretion.


Asunto(s)
Células Secretoras de Glucagón , Células Secretoras de Insulina , Islotes Pancreáticos , Adenosina Trifosfato , Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucosa , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Canales KATP
3.
Proc Natl Acad Sci U S A ; 111(44): 15804-9, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25331880

RESUMEN

Embryonic stem cell-based therapies exhibit great potential for the treatment of Parkinson's disease (PD) because they can significantly rescue PD-like behaviors. However, whether the transplanted cells themselves release dopamine in vivo remains elusive. We and others have recently induced human embryonic stem cells into primitive neural stem cells (pNSCs) that are self-renewable for massive/transplantable production and can efficiently differentiate into dopamine-like neurons (pNSC-DAn) in culture. Here, we showed that after the striatal transplantation of pNSC-DAn, (i) pNSC-DAn retained tyrosine hydroxylase expression and reduced PD-like asymmetric rotation; (ii) depolarization-evoked dopamine release and reuptake were significantly rescued in the striatum both in vitro (brain slices) and in vivo, as determined jointly by microdialysis-based HPLC and electrochemical carbon fiber electrodes; and (iii) the rescued dopamine was released directly from the grafted pNSC-DAn (and not from injured original cells). Thus, pNSC-DAn grafts release and reuptake dopamine in the striatum in vivo and alleviate PD symptoms in rats, providing proof-of-concept for human clinical translation.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Células-Madre Neurales/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Trasplante de Células Madre , Animales , Diferenciación Celular , Cuerpo Estriado/patología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Xenoinjertos , Humanos , Masculino , Células-Madre Neurales/trasplante , Enfermedad de Parkinson/patología , Ratas , Ratas Sprague-Dawley , Tirosina 3-Monooxigenasa/metabolismo
4.
Diabetologia ; 58(2): 324-33, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25381556

RESUMEN

AIMS/HYPOTHESIS: Insulin is a key metabolic regulator in health and diabetes. In pancreatic beta cells, insulin release is regulated by the major second messengers Ca(2+) and cAMP: exocytosis is triggered by Ca(2+) and mediated by the cAMP/protein kinase A (PKA) signalling pathway. However, the causal link between these two processes in primary beta cells remains undefined. METHODS: Time-resolved confocal imaging of fluorescence resonance energy transfer signals was performed to visualise PKA activity, and combined membrane capacitance recordings were used to monitor insulin secretion from patch-clamped rat beta cells. RESULTS: Membrane depolarisation-induced Ca(2+) influx caused an increase in cytosolic PKA activity via activating a Ca(2+)-sensitive adenylyl cyclase 8 (ADCY8) subpool. Glucose stimulation triggered coupled Ca(2+) oscillations and PKA activation. ADCY8 knockdown significantly reduced the level of depolarisation-evoked PKA activation and impaired replenishment of the readily releasable vesicle pool. Pharmacological inhibition of PKA by two inhibitors reduced depolarisation-induced PKA activation to a similar extent and reduced the capacity for sustained vesicle exocytosis and insulin release. CONCLUSIONS/INTERPRETATION: Our findings suggest that depolarisation-induced Ca(2+) influx plays dual roles in regulating exocytosis in rat pancreatic beta cells by triggering vesicle fusion and replenishing the vesicle pool to support sustained insulin release. Therefore, Ca(2+) influx may be important for glucose-stimulated insulin secretion.


Asunto(s)
Adenilil Ciclasas/metabolismo , Calcio/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Transducción de Señal
5.
Analyst ; 140(11): 3840-5, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25651802

RESUMEN

Schizophrenia is a severely devastating mental disorder, the pathological process of which is proposed to be associated with the dysfunction of dopaminergic transmission. Our previous results have demonstrated slower kinetics of transmitter release (glutamate release in hippocampus and norepinephrine release in adrenal slice) in a schizophrenia model, dysbindin null-sandy mice. However, whether dopaminergic transmission in the nigrostriatal pathway contributes to the pathology of dysbindin-/- mice remains unknown. Here, we have provided a step-by-step protocol to be applied in the in vivo amperometric recording of dopamine (DA) release from the mouse striatum evoked by an action potential (AP) pattern. With this protocol, AP pattern-dependent DA release was recorded from dysbindin-/- mice striatum in vivo. On combining amperometric recording in slices and electrophysiology, we found that in dysbindin-/- mice, (1) presynaptically, AP-pattern dependent dopamine overflow and uptake were intact in vivo; (2) the recycling of the dopamine vesicle pool remained unchanged. (3) Postsynaptically, the excitability of medium spiny neuron (MSN) was also normal, as revealed by patch-clamp recordings in striatal slices. Taken together, in contrast to reduced norepinephrine release in adrenal chromaffin cells, the dopaminergic transmission remains unchanged in the nigrostriatal pathway in dysbindin-/- mice, providing a new insight into the functions of the schizophrenia susceptibility gene dysbindin.


Asunto(s)
Dopamina/metabolismo , Electroquímica/métodos , Neostriado/metabolismo , Esquizofrenia/metabolismo , Animales , Transporte Biológico , Modelos Animales de Enfermedad , Disbindina , Proteínas Asociadas a la Distrofina/deficiencia , Estimulación Eléctrica , Fenómenos Electrofisiológicos , Ratones , Ratones Endogámicos C57BL , Neostriado/patología , Neostriado/fisiopatología , Neuronas/metabolismo , Neuronas/patología , Esquizofrenia/patología , Esquizofrenia/fisiopatología
6.
J Physiol ; 592(16): 3559-76, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24973407

RESUMEN

Striatal dopamine (DA) is critically involved in major brain functions such as motor control and deficits such as Parkinson's disease. DA is released following stimulation by two pathways: the nigrostriatal pathway and the cholinergic interneuron (ChI) pathway. The timing of synaptic transmission is critical in striatal circuits, because millisecond latency changes can reverse synaptic plasticity from long-term potentiation to long-term depression in a DA-dependent manner. Here, we determined the temporal components of ChI-driven DA release in striatal slices from optogenetic ChAT-ChR2-EYFP mice. After a light stimulus at room temperature, ChIs fired an action potential with a delay of 2.8 ms. The subsequent DA release mediated by nicotinic acetylcholine (ACh) receptors had a total latency of 17.8 ms, comprising 7.0 ms for cholinergic transmission and 10.8 ms for the downstream terminal DA release. Similar latencies of DA release were also found in striatal slices from wild-type mice. The latency of ChI-driven DA release was regulated by inhibiting the presynaptic vesicular ACh release. Moreover, we describe the time course of recovery of DA release via the two pathways and that of vesicle replenishment in DA terminals. Our work provides an example of unravelling the temporal building blocks during fundamental synaptic terminal-terminal transmission in motor regulation.


Asunto(s)
Potenciales de Acción , Neuronas Colinérgicas/metabolismo , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Tiempo de Reacción , Transmisión Sináptica , Acetilcolina/metabolismo , Animales , Neuronas Colinérgicas/fisiología , Cuerpo Estriado/citología , Cuerpo Estriado/fisiología , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Femenino , Interneuronas/metabolismo , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Nicotínicos/metabolismo , Vesículas Sinápticas/metabolismo
7.
Nat Metab ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39313541

RESUMEN

Diabetes mellitus involves both insufficient insulin secretion and dysregulation of glucagon secretion1. In healthy people, a fall in plasma glucose stimulates glucagon release and thereby increases counter-regulatory hepatic glucose production. This response is absent in many patients with type-1 diabetes (T1D)2, which predisposes to severe hypoglycaemia that may be fatal and accounts for up to 10% of the mortality in patients with T1D3. In rats with chemically induced or autoimmune diabetes, counter-regulatory glucagon secretion can be restored by SSTR antagonists4-7 but both the underlying cellular mechanism and whether it can be extended to humans remain unestablished. Here, we show that glucagon secretion is not stimulated by low glucose in isolated human islets from donors with T1D, a defect recapitulated in non-obese diabetic mice with T1D. This occurs because of hypersecretion of somatostatin, leading to aberrant paracrine inhibition of glucagon secretion. Normally, KATP channel-dependent hyperpolarization of ß-cells at low glucose extends into the δ-cells through gap junctions, culminating in suppression of action potential firing and inhibition of somatostatin secretion. This 'electric brake' is lost following autoimmune destruction of the ß-cells, resulting in impaired counter-regulation. This scenario accounts for the clinical observation that residual ß-cell function correlates with reduced hypoglycaemia risk8.

8.
Diabetes ; 72(10): 1446-1459, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37494670

RESUMEN

Whole-body glucose homeostasis is coordinated through secretion of glucagon and insulin from pancreatic islets. When glucose is low, glucagon is released from α-cells to stimulate hepatic glucose production. However, the mechanisms that regulate glucagon secretion from pancreatic α-cells remain unclear. Here we show that in α-cells, the interaction between fatty acid oxidation and glucose metabolism controls glucagon secretion. The glucose-dependent inhibition of glucagon secretion relies on pyruvate dehydrogenase and carnitine palmitoyl transferase 1a activity and lowering of mitochondrial fatty acid oxidation by increases in glucose. This results in reduced intracellular ATP and leads to membrane repolarization and inhibition of glucagon secretion. These findings provide a new framework for the metabolic regulation of the α-cell, where regulation of fatty acid oxidation by glucose accounts for the stimulation and inhibition of glucagon secretion. ARTICLE HIGHLIGHTS: It has become clear that dysregulation of glucagon secretion and α-cell function plays an important role in the development of diabetes, but we do not know how glucagon secretion is regulated. Here we asked whether glucose inhibits fatty acid oxidation in α-cells to regulate glucagon secretion. We found that fatty acid oxidation is required for the inhibitory effects of glucose on glucagon secretion through reductions in ATP. These findings provide a new framework for the regulation of glucagon secretion by glucose.


Asunto(s)
Células Secretoras de Glucagón , Islotes Pancreáticos , Adenosina Trifosfato/metabolismo , Glucemia/metabolismo , Ácidos Grasos/metabolismo , Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucosa/farmacología , Glucosa/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Humanos , Animales , Ratones
9.
Am J Physiol Cell Physiol ; 302(5): C796-803, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22135216

RESUMEN

While glucose-stimulated insulin secretion depends on Ca(2+) influx through voltage-gated Ca(2+) channels in the cell membrane of the pancreatic ß-cell, there is also ample evidence for an important role of intracellular Ca(2+) stores in insulin secretion, particularly in relation to drug stimuli. We report here that thiopental, a common anesthetic agent, triggers insulin secretion from the intact pancreas and primary cultured rat pancreatic ß-cells. We investigated the underlying mechanisms by measurements of whole cell K(+) and Ca(2+) currents, membrane potential, cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), and membrane capacitance. Thiopental-induced insulin secretion was first detected by enzyme-linked immunoassay, then further assessed by membrane capacitance measurement, which revealed kinetics distinct from glucose-induced insulin secretion. The thiopental-induced secretion was independent of cell membrane depolarization and closure of ATP-sensitive potassium (K(ATP)) channels. However, accompanied by the insulin secretion stimulated by thiopental, we recorded a significant intracellular [Ca(2+)] increase that was not from Ca(2+) influx across the cell membrane, but from intracellular Ca(2+) stores. The thiopental-induced [Ca(2+)](i) rise in ß-cells was sensitive to thapsigargin, a blocker of the endoplasmic reticulum Ca(2+) pump, as well as to heparin (0.1 mg/ml) and 2-aminoethoxydiphenyl borate (2-APB; 100 µM), drugs that inhibit inositol 1,4,5-trisphosphate (IP(3)) binding to the IP(3) receptor, and to U-73122, a phospholipase C inhibitor, but insensitive to ryanodine. Thapsigargin also diminished thiopental-induced insulin secretion. Thus, we conclude that thiopental-induced insulin secretion is mediated by activation of the intracellular IP(3)-sensitive Ca(2+) store.


Asunto(s)
Calcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Insulina/metabolismo , Tiopental/farmacología , Anestésicos Intravenosos , Animales , Compuestos de Boro/farmacología , Estrenos/farmacología , Glucosa/metabolismo , Heparina/farmacología , Inositol 1,4,5-Trifosfato/antagonistas & inhibidores , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inhibidores , Insulina/análisis , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-Clamp , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Pirrolidinonas/farmacología , Ratas , Ratas Wistar , Rianodina/farmacología , Tapsigargina/farmacología
10.
Nat Commun ; 13(1): 4237, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869052

RESUMEN

Glucose-induced insulin secretion depends on ß-cell electrical activity. Inhibition of ATP-regulated potassium (KATP) channels is a key event in this process. However, KATP channel closure alone is not sufficient to induce ß-cell electrical activity; activation of a depolarizing membrane current is also required. Here we examine the role of the mechanosensor ion channel PIEZO1 in this process. Yoda1, a specific PIEZO1 agonist, activates a small membrane current and thereby triggers ß-cell electrical activity with resultant stimulation of Ca2+-influx and insulin secretion. Conversely, the PIEZO1 antagonist GsMTx4 reduces glucose-induced Ca2+-signaling, electrical activity and insulin secretion. Yet, PIEZO1 expression is elevated in islets from human donors with type-2 diabetes (T2D) and a rodent T2D model (db/db mouse), in which insulin secretion is reduced. This paradox is resolved by our finding that PIEZO1 translocates from the plasmalemma into the nucleus (where it cannot influence the membrane potential of the ß-cell) under experimental conditions emulating T2D (high glucose culture). ß-cell-specific Piezo1-knockout mice show impaired glucose tolerance in vivo and reduced glucose-induced insulin secretion, ß-cell electrical activity and Ca2+ elevation in vitro. These results implicate mechanotransduction and activation of PIEZO1, via intracellular accumulation of glucose metabolites, as an important physiological regulator of insulin secretion.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucosa , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Insulina/metabolismo , Secreción de Insulina , Canales Iónicos/genética , Canales Iónicos/metabolismo , Mecanotransducción Celular , Ratones
11.
J Neurochem ; 119(2): 342-53, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21854394

RESUMEN

Action potential (AP) patterns and dopamine (DA) release are known to correlate with rewarding behaviors, but how codes of AP bursts translate into DA release in vivo remains elusive. Here, a given AP pattern was defined by four codes, termed total AP number, frequency, number of AP bursts, and interburst time [N, f, b, i].. The 'burst effect' was calculated by the ratio (γ) of DA overflow by multiple bursts to that of a single burst when total AP number was fixed. By stimulating the medial forebrain bundle using AP codes at either physiological (20 Hz) or supraphysiological (80 Hz) frequencies, we found that DA was released from two kinetically distinct vesicle pools, the fast-releasable pool (FRP) and prolonged-releasable pool (PRP), in striatal dopaminergic terminals in vivo. We examined the effects of vesicle pools on AP-pattern dependent DA overflow and found, with given 'burst codes' [b=8, i=0.5 s], a large total AP number [N = 768, f = 80 Hz] produced a facilitating burst-effect (γ[b8/b1] = 126 ± 3%), while a small total AP number [N=96, 80 Hz] triggered a depressing-burst-effect (γ[b8/b1] = 29 ± 4%). Furthermore, we found that the PRP (but not the FRP) predominantly contributed to the facilitating-burst-effect and the FRP played an important role in the depressing-burst effect. Thus, our results suggest that striatal DA release captures pre-synaptic AP pattern information through different releasable pools.


Asunto(s)
Potenciales de Acción/fisiología , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Vesículas Sinápticas/fisiología , Algoritmos , Animales , Simulación por Computador , Estimulación Eléctrica , Electroquímica , Canales Iónicos/efectos de los fármacos , Canales Iónicos/metabolismo , Cinética , Masculino , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Vesículas Sinápticas/metabolismo
12.
J Clin Invest ; 130(12): 6639-6655, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33196462

RESUMEN

By restoring glucose-regulated insulin secretion, glucagon-like peptide-1-based (GLP-1-based) therapies are becoming increasingly important in diabetes care. Normally, the incretins GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) jointly maintain normal blood glucose levels by stimulation of insulin secretion in pancreatic ß cells. However, the reason why only GLP-1-based drugs are effective in improving insulin secretion after presentation of diabetes has not been resolved. ATP-sensitive K+ (KATP) channels play a crucial role in coupling the systemic metabolic status to ß cell electrical activity for insulin secretion. Here, we have shown that persistent membrane depolarization of ß cells due to genetic (ß cell-specific Kcnj11-/- mice) or pharmacological (long-term exposure to sulfonylureas) inhibition of the KATP channel led to a switch from Gs to Gq in a major amplifying pathway of insulin secretion. The switch determined the relative insulinotropic effectiveness of GLP-1 and GIP, as GLP-1 can activate both Gq and Gs, while GIP only activates Gs. The findings were corroborated in other models of persistent depolarization: a spontaneous diabetic KK-Ay mouse and nondiabetic human and mouse ß cells of pancreatic islets chronically treated with high glucose. Thus, a Gs/Gq signaling switch in ß cells exposed to chronic hyperglycemia underlies the differential insulinotropic potential of incretins in diabetes.


Asunto(s)
Cromograninas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Incretinas/farmacología , Células Secretoras de Insulina/metabolismo , Transducción de Señal , Animales , Cromograninas/genética , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Humanos , Insulina/genética , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/patología , Ratones , Ratones Noqueados , Canales de Potasio de Rectificación Interna/deficiencia , Canales de Potasio de Rectificación Interna/metabolismo
13.
Nat Commun ; 11(1): 2241, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32382023

RESUMEN

The generation of pancreatic cell types from renewable cell sources holds promise for cell replacement therapies for diabetes. Although most effort has focused on generating pancreatic beta cells, considerable evidence indicates that glucagon secreting alpha cells are critically involved in disease progression and proper glucose control. Here we report on the generation of stem cell-derived human pancreatic alpha (SC-alpha) cells from pluripotent stem cells via a transient pre-alpha cell intermediate. These pre-alpha cells exhibit a transcriptional profile similar to mature alpha cells and although they produce proinsulin protein, they do not secrete significant amounts of processed insulin. Compound screening identified a protein kinase c activator that promotes maturation of pre-alpha cells into SC-alpha cells. The resulting SC-alpha cells do not express insulin, share an ultrastructure similar to cadaveric alpha cells, express and secrete glucagon in response to glucose and some glucagon secretagogues, and elevate blood glucose upon transplantation in mice.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Secretoras de Glucagón/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Madre Pluripotentes/citología , Western Blotting , Diferenciación Celular/fisiología , Línea Celular , Electrofisiología , Técnica del Anticuerpo Fluorescente , Humanos , Páncreas/citología
15.
Physiol Rep ; 6(17): e13852, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30187652

RESUMEN

Glucagon is the body's main hyperglycemic hormone, and its secretion is dysregulated in type 2 diabetes mellitus (T2DM). The incretin hormone glucagon-like peptide-1 (GLP-1) is released from the gut and is used in T2DM therapy. Uniquely, it both stimulates insulin and inhibits glucagon secretion and thereby lowers plasma glucose levels. In this study, we have investigated the action of GLP-1 on glucagon release from human pancreatic islets. Immunocytochemistry revealed that only <0.5% of the α-cells possess detectable GLP-1R immunoreactivity. Despite this, GLP-1 inhibited glucagon secretion by 50-70%. This was due to a direct effect on α-cells, rather than paracrine signaling, because the inhibition was not reversed by the insulin receptor antagonist S961 or the somatostatin receptor-2 antagonist CYN154806. The inhibitory effect of GLP-1 on glucagon secretion was prevented by the PKA-inhibitor Rp-cAMPS and mimicked by the adenylate cyclase activator forskolin. Electrophysiological measurements revealed that GLP-1 decreased action potential height and depolarized interspike membrane potential. Mathematical modeling suggests both effects could result from inhibition of P/Q-type Ca2+ channels. In agreement with this, GLP-1 and ω-agatoxin (a blocker of P/Q-type channels) inhibited glucagon secretion in islets depolarized by 70 mmol/L [K+ ]o , and these effects were not additive. Intracellular application of cAMP inhibited depolarization-evoked exocytosis in individual α-cells by a PKA-dependent (Rp-cAMPS-sensitive) mechanism. We propose that inhibition of glucagon secretion by GLP-1 involves activation of the few GLP-1 receptors present in the α-cell membrane. The resulting small elevation of cAMP leads to PKA-dependent inhibition of P/Q-type Ca2+ channels and suppression of glucagon exocytosis.


Asunto(s)
Canales de Calcio Tipo P/metabolismo , Canales de Calcio Tipo Q/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Células Secretoras de Glucagón/metabolismo , Glucagón/metabolismo , Adulto , Animales , Bloqueadores de los Canales de Calcio/farmacología , Células Cultivadas , Exocitosis , Femenino , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Glucagón/fisiología , Humanos , Masculino , Potenciales de la Membrana , Ratones , Persona de Mediana Edad
16.
Nat Commun ; 5: 3925, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24968237

RESUMEN

Striatal dopamine (DA) release can be independently triggered not only by action potentials (APs) in dopaminergic axons but also APs in cholinergic interneurons (ChIs). Nicotine causes addiction by modulating DA release, but with paradoxical findings. Here, we investigate how physiologically relevant levels of nicotine modulate striatal DA release. The optogenetic stimulation of ChIs elicits DA release, which is potently inhibited by nicotine with an IC50 of 28 nM in the dorsal striatum slice. This ChI-driven DA release is predominantly mediated by α6ß2* nAChRs. Local electrical stimulus (Estim) activates both dopaminergic axons and ChIs. Nicotine does not affect the AP(DA)-dependent DA release (AP(DA), AP of dopaminergic axon). During burst Estim, nicotine permits the facilitation of DA release by prevention of DA depletion. Our work indicates that cholinergic stimulation-induced DA release is profoundly modulated by physiologically relevant levels of nicotine and resolves the paradoxical observation of nicotine's effects on striatal DA release.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Nicotina/metabolismo , Animales , Cuerpo Estriado/fisiología , Estimulación Eléctrica , Técnicas In Vitro , Ratones , Ratones Transgénicos
17.
Neurochem Int ; 62(1): 50-7, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23159778

RESUMEN

The ambient resting dopamine (DA) concentration in brain regulates cognition and motivation. Despite its importance, resting DA level in vivo remains elusive. Here, by high-frequency stimulation of the medial forebrain bundle and immediately following the stimulus-induced DA overflow, we recorded a DA "undershoot" which is a temporal reduction of DA concentration to a level below the baseline. Based on the DA undershoot, we predicted a resting DA concentration of ∼73nM in rat striatum in vivo. Simulation studies suggested that removing basal DA by DAT during the post-stimulation inhibition of tonic DA release caused the DA undershoot, and the resting concentration of DA modulated the kinetics of the evoked DA transient. The DA undershoot was eliminated by either blocking D2 receptors with haloperidol or blocking the DA transporter (DAT) with cocaine. Therefore, the impulse-dependent resting DA concentration is in the tens of nanomolar range and is modulated by the presynaptic D2 receptors and the DAT in vivo.


Asunto(s)
Dopamina/metabolismo , Espacio Extracelular/metabolismo , Neostriado/metabolismo , Algoritmos , Animales , Cocaína/farmacología , Simulación por Computador , Antagonistas de Dopamina/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Estimulación Eléctrica , Electroquímica , Haloperidol/farmacología , Cinética , Masculino , Haz Prosencefálico Medial/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D2/efectos de los fármacos , Receptores de Dopamina D2/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda