RESUMEN
The present research study investigates the performance of pyrolysis oils recycled from waste tires as a collector in coal flotation. Three different types of pyrolysis oils (namely, POT1, POT2, and POT3) were produced through a two-step pressure pyrolysis method followed by an oil rolling process. The characteristics of POTs were adjusted using various oil-modifying additives such as mineral salts and organic solvents. The chemical structure of POTs was explored by employing necessary instrumental analysis techniques, including microwave-assisted acid digestion (MAD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), Fourier-transform infrared spectroscopy (FT-IR), and gas chromatography-mass spectrometry (GC-MS). The collecting performance of POTs in coal flotation was evaluated using an experimental design based on Response Surface Methodology (RSM), considering the ash content and yield of the final concentrate. The effect of the type and dosage of POTs was evaluated in conjunction with other important operating variables, including the dosage of frother, dosage of depressant, and the type of coal. Results of POTs characterization revealed that the pyrolysis oils were a complex composition of light and heavy hydrocarbon molecules, including naphthalene, biphenyl, acenaphthylene, fluorene, and pyrene. Statistical analysis of experimental results showed that among different POTs, POT1 exhibited remarkable superiority, achieving not only a 15% higher coal recovery but also a 12% lower ash content. The outstanding performance of POT1 was attributed to its unique composition, which includes a concentrated presence of carbon chains within the optimal range for efficient flotation. Additionally, the FT-IR spectra of POT1 reveal specific functional groups, including aromatic and aliphatic compounds, greatly enhancing its interaction with coal surfaces, as confirmed by contact angle measurement. This research provides valuable insights into the specific carbon chains and functional groups that contribute to the effectiveness of POT as a collector, facilitating the optimization of coal flotation processes and underscoring the environmental advantages of employing pyrolysis oils as sustainable alternatives in the mining industry.
Asunto(s)
Carbón Mineral , Pirólisis , Reciclaje , Cromatografía de Gases y Espectrometría de Masas , Espectroscopía Infrarroja por Transformada de Fourier , Aceites/química , AutomóvilesRESUMEN
The groundwater inflow into a mine during its life and after ceasing operations is one of the most important concerns of the mining industry. This paper presents a hydrogeological assessment of the Irankuh Zn-Pb mine at 20 km south of Esfahan and 1 km northeast of Abnil in west-Central Iran. During mine excavation, the upper impervious bed of a confined aquifer was broken and water at high-pressure flowed into an open pit mine associated with the Kolahdarvazeh deposit. The inflow rates were 6.7 and 1.4 m(3)/s at the maximum and minimum quantities, respectively. Permeability, storage coefficient, thickness and initial head of the fully saturated confined aquifer were 3.5 × 10(-4) m/s, 0.2, 30 m and 60 m, respectively. The hydraulic heads as a function of time were monitored at four observation wells in the vicinity of the pit over 19 weeks and at an observation well near a test well over 21 h. In addition, by measuring the rate of pumping out from the pit sump, at a constant head (usually equal to height of the pit floor), the real inflow rates to the pit were monitored. The main innovations of this work were to make comparison between numerical modelling using a finite element software called SEEP/W and actual data related to inflow and extend the applicability of the numerical model. This model was further used to estimate the hydraulic heads at the observation wells around the pit over 19 weeks during mining operations. Data from a pump-out test and observation wells were used for model calibration and verification. In order to evaluate the model efficiency, the modelling results of inflow quantity and hydraulic heads were compared to those from analytical solutions, as well as the field data. The mean percent error in relation to field data for the inflow quantity was 0.108. It varied between 1.16 and 1.46 for hydraulic head predictions, which are much lower values than the mean percent errors resulted from the analytical solutions (from 1.8 to 5.3 for inflow and from 2.16 to 3.5 for hydraulic head predictions). The analytical solutions underestimated the inflow compared to the numerical model for the time period of 2-19 weeks. The results presented in this paper can be used for developing an effective dewatering program.
Asunto(s)
Monitoreo del Ambiente , Agua Subterránea/análisis , Minería , Modelos Teóricos , Irán , Factores de Tiempo , Movimientos del AguaRESUMEN
Pyrite oxidation and release of the oxidation products from a low-grade coal waste dump to stream, groundwater and soil was investigated by geochemical and hydrogeochemical techniques at Alborz Sharghi coal washing plant, Shahrood, northeast Iran. Hydrogeochemical analysis of water samples indicates that the metal concentrations in the stream waters were low. Moreover, the pH of the water showed no considerable change. The analysis of the stream water samples shows that except the physical changes, pyrite oxidation process within the coal washing waste dump has not affected the quality of the stream water. Water type was determined to be calcium sulphate. The results of the analysis of groundwater samples indicate that the pH varies from 7.41 to 7.51. The concentrations of the toxic metals were low. The concentration of SO4 is slightly above than its standard concentration in potable water. It seems that the groundwater less affected by the coal washing operation in the study area. Geochemical analysis of the sediment samples shows that Fe concentration decreases gradually downstream the waste dump with pH rising. SO(4) decreases rapidly downstream direction. Copper, Zn and Co concentrations decrease with distance from the waste dump due to a dilution effect by the mixing of uncontaminated sediments. These elements, in particular, Zn are considerably elevated in sediment sample collected at the nearest distance to the waste dump. There is no doubt that such investigations can help to develop an appropriate water remediation plan.
Asunto(s)
Carbón Mineral , Hierro/química , Metales/análisis , Minería , Sulfuros/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Irán , Oxidación-Reducción , Eliminación de Residuos LíquidosRESUMEN
Phytoremediation assisted by electrokinetic is a potential technology for remediation of contaminated soil, but little is known about its application on real contaminated soils. This study aims to evaluate the Vetiver grass application on the electro-phytoremediation of a real contaminated soil around a metal smelter factory. Different types of the electric field (AC-DC), voltage gradient (1-2V/cm), saturation and unsaturation condition, and Eh-pH variation were investigated for Vetiver electro-phytoremediation performance. Vetiver grass had been grown for 21 days. Then three different voltage gradients (1, 2DCV/cm and 2ACV/cm) were applied for 8 h/d across the soil domain for the next 21 days in comparison with a control cell without electric field (PR). The results showed that despite the AC current application which induced small changes, the application of DC current significantly changed the Eh-pH values. The maximum accumulation of extractable metals in Vetiver grass occurred in 2DCV/cm that shows approximately 50% increase in comparison with the AC and PR cells. The presence of contaminants poisons the Vetiver in all cells and all plants under 2DCV/cm dried out at the end of the experiment. Despite the significant reduction of heavy metals, there was no noticeable phytoextraction due to the application of DC current. Therefore, DC current can be used for phytoremediation through phytostabilization. However, the overall metals uptake in plants shoots under AC treatment with BCF>1 was much higher than the PR and DC treatment. Considering the translocation rate and plants health, if the AC current is applied in a long treatment time, it could have better results in electro-phytoremediation of the Vetiver grass through phytoextraction process. However, the maximum removal of heavy metals was in the cathode part of the cell under 2DCV/cm that shows 65% improvement in comparison with the PR cell.
Asunto(s)
Biodegradación Ambiental , Chrysopogon/metabolismo , Contaminantes del Suelo/metabolismo , Metales Pesados/análisis , Suelo/química , Contaminantes del Suelo/análisisRESUMEN
BACKGROUND: Electro-biodegradation is a novel technique for cyanide degradation in aqueous solutions. Many physical, chemical, and biological methods have been developed and used to treat cyanide degradation. The biological methods are more environmentally-friendly and economically cost-effective when compared to other techniques, however, the process reaction time period is much longer and the efficiency is lower. METHODS: In this research, the bacterial strain, Bacillus pumilus ATCC 7061, was tested for the first time to introduce the Cyanide Electro-biodegradation technique. By using a direct current power supply, electrons were generated in an electro-biodegradation cell containing culture media at free cyanide concentrations of 100 to 500 mg/l, under alkaline conditions. RESULTS: Experimental tests showed that when electrons were added and bacteria were inoculated into the aqueous media containing 100, 200, 300, 400 and 500 mg/l of free cyanide, the cyanide degradation efficiency increased from 16.2, 21.6, 29.5, 38.7 and 44.5% to 98.6, 99.3, 99.7, 99.8 and 99.7%, in 36, 72, 137, 233 and 301 h, respectively. The results show that by adding electrons, the process reaction time decreases and cyanide degradation efficiency increases significantly. CONCLUSIONS: The results presented here demonstrate for the first time the importance and the significance of the electro-biodegradation technique in the efficient degradation and removal of cyanide present in aqueous solutions.