Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sci Rep ; 14(1): 11038, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744995

RESUMEN

Extensive research efforts have been dedicated to developing electrode materials with high capacity to address the increasing complexities arising from the energy crisis. Herein, a new nanocomposite was synthesized via the sol-gel method by immobilizing K6ZnW12O40 within the surface of NiZn2O4. ZnW12O40@NiZn2O4 was characterized by FT-IR, UV-Vis, XRD, SEM, EDX, BET, and TGA-DTG methods. The electrochemical characteristics of the materials were examined using cyclic voltammogram (CV) and charge-discharge chronopotentiometry (CHP) techniques. Multiple factors affecting the hydrogen storage capacity, including current density (j), surface area of the copper foam, and the consequences of repeated cycles of hydrogen adsorption-desorption were evaluated. The initial cycle led to an impressive hydrogen discharge capability of 340 mAh/g, which subsequently increased to 900 mAh/g after 20 cycles with a current density of 2 mA in 6.0 M KOH medium. The surface area and the electrocatalytic characteristics of the nanoparticles contribute to facilitate the formation of electrons and provide good diffusion channels for the movement of electrolyte ions throughout the charge-discharge procedure.

2.
J Biomed Mater Res A ; 102(9): 3140-53, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24133006

RESUMEN

Polycaprolactone (PCL) is a resorbable polymer used extensively in bone tissue engineering owing to good structural properties and processability. Strontium-substituted bioactive glass (SrBG) has the ability to promote osteogenesis and may be incorporated into scaffolds intended for bone repair. Here, we describe for the first time, the development of a PCL-SrBG composite scaffold incorporating 10% (weight) of SrBG particles into PCL bulk, produced by the technique of melt electrospinning. We show that we are able to reproducibly manufacture composite scaffolds with an interconnected porous structure and, furthermore, these scaffolds were demonstrated to be noncytotoxic in vitro. Ions present in the SrBG component were shown to dissolve into cell culture media and promoted precipitation of a calcium phosphate layer on the scaffold surface which in turn led to noticeably enhanced alkaline phosphatase activity in MC3T3-E1 cells compared to PLC-only scaffolds. These results suggest that melt-electrospun PCL-SrBG composite scaffolds show potential to become effective bone graft substitutes.


Asunto(s)
Sustitutos de Huesos/química , Cerámica/química , Osteoblastos/citología , Poliésteres/química , Estroncio/química , Andamios del Tejido/química , Fosfatasa Alcalina/metabolismo , Animales , Regeneración Ósea , Adhesión Celular , Línea Celular , Proliferación Celular , Ratones , Osteoblastos/metabolismo , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda