Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(19): 9380-9389, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31004059

RESUMEN

Although channelrhodopsin (ChR) is a widely applied light-activated ion channel, important properties such as light adaptation, photocurrent inactivation, and alteration of the ion selectivity during continuous illumination are not well understood from a molecular perspective. Herein, we address these open questions using single-turnover electrophysiology, time-resolved step-scan FTIR, and Raman spectroscopy of fully dark-adapted ChR2. This yields a unifying parallel photocycle model integrating now all so far controversial discussed data. In dark-adapted ChR2, the protonated retinal Schiff base chromophore (RSBH+) adopts an all-trans,C=N-anti conformation only. Upon light activation, a branching reaction into either a 13-cis,C=N-anti or a 13-cis,C=N-syn retinal conformation occurs. The anti-cycle features sequential H+ and Na+ conductance in a late M-like state and an N-like open-channel state. In contrast, the 13-cis,C=N-syn isomer represents a second closed-channel state identical to the long-lived P480 state, which has been previously assigned to a late intermediate in a single-photocycle model. Light excitation of P480 induces a parallel syn-photocycle with an open-channel state of small conductance and high proton selectivity. E90 becomes deprotonated in P480 and stays deprotonated in the C=N-syn cycle. Deprotonation of E90 and successive pore hydration are crucial for late proton conductance following light adaptation. Parallel anti- and syn-photocycles now explain inactivation and ion selectivity changes of ChR2 during continuous illumination, fostering the future rational design of optogenetic tools.


Asunto(s)
Cationes/metabolismo , Channelrhodopsins/química , Channelrhodopsins/metabolismo , Cationes/química , Channelrhodopsins/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Células HEK293 , Humanos , Isomerismo , Luz , Conformación Proteica , Protones , Retinaldehído/química
2.
Chembiochem ; 20(14): 1766-1771, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30920724

RESUMEN

The primary goal of optogenetics is the light-controlled noninvasive and specific manipulation of various cellular processes. Herein, we present a hybrid strategy for targeted protein engineering combining computational techniques with electrophysiological and UV/visible spectroscopic experiments. We validated our concept for channelrhodopsin-2 and applied it to modify the less-well-studied vertebrate opsin melanopsin. Melanopsin is a promising optogenetic tool that functions as a selective molecular light switch for G protein-coupled receptor pathways. Thus, we constructed a model of the melanopsin Gq protein complex and predicted an absorption maximum shift of the Y211F variant. This variant displays a narrow blue-shifted action spectrum and twofold faster deactivation kinetics compared to wild-type melanopsin on G protein-coupled inward rectifying K+ (GIRK) channels in HEK293 cells. Furthermore, we verified the in vivo activity and optogenetic potential for the variant in mice. Thus, we propose that our developed concept will be generally applicable to designing optogenetic tools.


Asunto(s)
Opsinas de Bastones/química , Opsinas de Bastones/efectos de la radiación , Secuencia de Aminoácidos , Animales , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Luz , Ratones , Mutación , Optogenética/métodos , Prueba de Estudio Conceptual , Ingeniería de Proteínas , Células de Purkinje/metabolismo , Células de Purkinje/efectos de la radiación , Opsinas de Bastones/genética , Alineación de Secuencia , Transducción de Señal/efectos de la radiación
3.
Commun Biol ; 4(1): 578, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990694

RESUMEN

Channelrhodopsins are widely used in optogenetic applications. High photocurrents and low current inactivation levels are desirable. Two parallel photocycles evoked by different retinal conformations cause cation-conducting channelrhodopsin-2 (CrChR2) inactivation: one with efficient conductivity; one with low conductivity. Given the longer half-life of the low conducting photocycle intermediates, which accumulate under continuous illumination, resulting in a largely reduced photocurrent. Here, we demonstrate that for channelrhodopsin-1 of the cryptophyte Guillardia theta (GtACR1), the highly conducting C = N-anti-photocycle was the sole operating cycle using time-resolved step-scan FTIR spectroscopy. The correlation between our spectroscopic measurements and previously reported electrophysiological data provides insights into molecular gating mechanisms and their role in the characteristic high photocurrents. The mechanistic importance of the central constriction site amino acid Glu-68 is also shown. We propose that canceling out the poorly conducting photocycle avoids the inactivation observed in CrChR2, and anticipate that this discovery will advance the development of optimized optogenetic tools.


Asunto(s)
Aniones/química , Channelrhodopsins/fisiología , Criptófitas/fisiología , Fenómenos Electrofisiológicos , Activación del Canal Iónico , Luz , Optogenética , Espectrofotometría
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda