Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phys Rev Lett ; 129(12): 120403, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36179175

RESUMEN

We give a complete characterization of the (non)classicality of all stabilizer subtheories. First, we prove that there is a unique nonnegative and diagram-preserving quasiprobability representation of the stabilizer subtheory in all odd dimensions, namely Gross's discrete Wigner function. This representation is equivalent to Spekkens' epistemically restricted toy theory, which is consequently singled out as the unique noncontextual ontological model for the stabilizer subtheory. Strikingly, the principle of noncontextuality is powerful enough (at least in this setting) to single out one particular classical realist interpretation. Our result explains the practical utility of Gross's representation by showing that (in the setting of the stabilizer subtheory) negativity in this particular representation implies generalized contextuality. Since negativity of this particular representation is a necessary resource for universal quantum computation in the state injection model, it follows that generalized contextuality is also a necessary resource for universal quantum computation in this model. In all even dimensions, we prove that there does not exist any nonnegative and diagram-preserving quasiprobability representation of the stabilizer subtheory, and, hence, that the stabilizer subtheory is contextual in all even dimensions.

2.
IEEE/ACM Trans Comput Biol Bioinform ; 18(6): 2144-2156, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-31199267

RESUMEN

Gene trees can differ from species trees due to a variety of biological phenomena, the most prevalent being gene duplication, horizontal gene transfer, gene loss, and coalescence. To explain topological incongruence between the two trees, researchers apply reconciliation methods, often relying on a maximum parsimony framework. However, while several studies have investigated the space of maximum parsimony reconciliations (MPRs) under the duplication-loss and duplication-transfer-loss models, the space of MPRs under the duplication-loss-coalescence (DLC) model remains poorly understood. To address this problem, we present new algorithms for computing the size of MPR space under the DLC model and sampling from this space uniformly at random. Our algorithms are efficient in practice, with runtime polynomial in the size of the species and gene tree when the number of genes that map to any given species is fixed, thus proving that the MPR problem is fixed-parameter tractable. We have applied our methods to a biological data set of 16 fungal species to provide the first key insights in the space of MPRs under the DLC model. Our results show that a plurality reconciliation, and underlying events, are likely to be representative of MPR space.


Asunto(s)
Algoritmos , Duplicación de Gen/genética , Genómica/métodos , Modelos Genéticos , Filogenia , Transferencia de Gen Horizontal/genética , Genes Fúngicos/genética
3.
Science ; 355(6329)2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28280151

RESUMEN

Perfect matching of an assembled physical sequence to a specified designed sequence is crucial to verify design principles in genome synthesis. We designed and de novo synthesized 536,024-base pair chromosome synV in the "Build-A-Genome China" course. We corrected an initial isolate of synV to perfectly match the designed sequence using integrative cotransformation and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated editing in 22 steps; synV strains exhibit high fitness under a variety of culture conditions, compared with that of wild-type V strains. A ring synV derivative was constructed, which is fully functional in Saccharomyces cerevisiae under all conditions tested and exhibits lower spore viability during meiosis. Ring synV chromosome can extends Sc2.0 design principles and provides a model with which to study genomic rearrangement, ring chromosome evolution, and human ring chromosome disorders.


Asunto(s)
Cromosomas Artificiales de Levadura/química , Genoma Fúngico , Saccharomyces cerevisiae/genética , Biología Sintética/métodos , Proteínas Bacterianas , Proteína 9 Asociada a CRISPR , Cromosomas Artificiales de Levadura/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endonucleasas , Edición Génica , Reordenamiento Génico , Meiosis , Modelos Genéticos , Saccharomyces cerevisiae/citología , Transformación Genética
4.
PLoS One ; 11(1): e0146773, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26751680

RESUMEN

Campesterol is an important precursor for many sterol drugs, e.g. progesterone and hydrocortisone. In order to produce campesterol in Yarrowia lipolytica, C-22 desaturase encoding gene ERG5 was disrupted and the heterologous 7-dehydrocholesterol reductase (DHCR7) encoding gene was constitutively expressed. The codon-optimized DHCR7 from Rallus norvegicus, Oryza saliva and Xenapus laevis were explored and the strain with the gene DHCR7 from X. laevis achieved the highest titer of campesterol due to D409 in substrate binding sites. In presence of glucose as the carbon source, higher biomass conversion yield and product yield were achieved in shake flask compared to that using glycerol and sunflower seed oil. Nevertheless, better cell growth rate was observed in medium with sunflower seed oil as the sole carbon source. Through high cell density fed-batch fermentation under carbon source restriction strategy, a titer of 453±24.7 mg/L campesterol was achieved with sunflower seed oil as the carbon source, which is the highest reported microbial titer known. Our study has greatly enhanced campesterol accumulation in Y. lipolytica, providing new insight into producing complex and desired molecules in microbes.


Asunto(s)
Proteínas Bacterianas/genética , Colesterol/análogos & derivados , Ingeniería Genética/métodos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Fitosteroles/biosíntesis , Yarrowia/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Biomasa , Reactores Biológicos , Carbono/química , Colesterol/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Fermentación , Glucosa/química , Glicerol/química , Microbiología Industrial , Lípidos/química , Datos de Secuencia Molecular , Oryza/metabolismo , Aceites de Plantas , Ratas , Homología de Secuencia de Aminoácido , Aceite de Girasol , Xenopus laevis
5.
ACS Synth Biol ; 5(12): 1535-1545, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27389125

RESUMEN

Multigene pathway engineering usually needs amounts of part libraries on transcriptional and translational regulation as well as mutant enzymes to achieve the optimal part combinations of the target pathways. We report a new strategy for multigene pathway engineering with regulatory linkers (M-PERL) focusing on tuning the transcriptional start site (TSS) of yeast promoters. The regulatory linkers are composed of two homologous ends of two adjacent gene parts for assembly and a central regulatory region between them. We investigated the effect of the homologous end's length on multigene assembly, analyzed the influences of truncated, replaced, and elongated TSS and the adjacent region on promoters, and introduced 5 to 40 random bases of N (A/T/C/G) in the central regulatory region of the linkers which effectively varied the promoter's strengths. The distinct libraries of five regulatory linkers were used simultaneously to assemble and tune all five genes in the violacein synthesis pathway. The gene expressions affected the product profiles significantly, and the recombinants for enhanced single component synthesis and varied composition synthesis were obtained. This study offers an efficient tool to assemble and regulate multigene pathways.


Asunto(s)
Ingeniería Genética/métodos , Secuencias Reguladoras de Ácidos Nucleicos , Saccharomyces cerevisiae/genética , Sitio de Iniciación de la Transcripción , Expresión Génica , Biblioteca de Genes , Indoles/metabolismo , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda